
	

Induction from Multi-label Examples

By

Hind Hazza Talal Alsharif

A thesis submitted for the requirements of the degree of Master on Computer

Science

FACULTY OF COMPUTER AND INFORMATION TECHNOLOGY

KING ABDULAZIZ UNIVERSITY
JEDDAH – SAUDI ARABIA
1435 H – 2014 G (25-6-2014)

بسم الله االرحمن االرحیيم

Induction from Multi-label Examples

By

Hind Hazza Talal Alsharif

A thesis submitted for the requirements of the degree of Master on Computer

Science

Supervised By

Dr. Wadee Saleh Alhalabi

FACULTY OF COMPUTER AND INFORMATION TECHNOLOGY
KING ABDULAZIZ UNIVERSITY

JEDDAH – SAUDI ARABIA
1435 H – 2014 G (25-6-2014)

	

	

I
	

Induction From Multi-label Examples

By: Hind Hazza Alsharif

Abstract

 The task of text categorization is related to the assignation of one or

more classes to a document. In order to solve this problem, the simplest

machine learning approaches induce a binary classifier separately for each

class, and then use these classifiers in parallel. An example of application

belonging to this group and solved in this thesis is represented by a digital

library collection which was classified into classes and sub-classes in a

hierarchical order. Another important issue considered is the fact that a

document can belong to more than one class, and therefore, a high

performance multi-class label classifier was employed.

 The main general objective of the current work is to point out the

advantages of machine learning techniques for applications in text

categorization area. Another aspect is related to the database requirements

of these techniques in terms of training and testing, when high

performance is desired. In this context, two situations were identified: i)

10 to 15% of the data used for training, and testing and ii) > 50% of the

data set used for training and testing. In the latter case, the machine

	

	

II
	

learning may not have a significant contribution, as the computational

effort and time consumed are very high. However, if 10 to 15% of the data

set is needed, then, machine learning has a great contribution.

 The last issue approached in this research is the inter-class relation,

which means, if the example is classified to belong to a class C then the

example belong to parents and grandparents of the class C. The main

question arising was: is opposite way true too?

 In order to answer all these important aspects, a framework to

automatically classify documents was employed.

	

	

III

Dedicated to

I would like to express my gratitude towards my parents and family for their kind

cooperation and encouragement, which has helped me in completion of this

project.

I would like also to express my special thanks to my advisor for giving me his

guidance and constant supervision as well as for providing necessary information

regarding this work.

At last, I would like also to thank the examination committee for their time and

attention.

	

	

IV
	

Table of Contents

Examination committee approval

 Abstract…………………………………………………………………………………….I

 Dedication………………………………………………………………….…………….. III

Table of Contents…………...…………………………………..……….……...……..…IV

List of Tables…………………..………………………………...………………….…..IV

List of Figures……………………….…..…………………………………………IV

List of Symbols……………………………………….……………………………IV 	

Chapter 1 . Introduction .. 1

 1.1. Problem Statement ... 2

Chapter 2 . Background .. 7

 2.1 Bayesian Networks: .. 7

 2.2 K-Nearest Neighbor: ... 9

 2.3 Random Forest: ... 10

 2.4 Support Vector Machine: .. 12

 2.5 Hierarchical Multi-label Classification Strategies .. 16

 2.5.1 Flat classification ... 16

 2.5.2 Top-down approach (local classifier): ... 16

 2.5.3 The “big-bang” approach (global classifier): ... 18

 2.6. Other Classification methods .. 21

	

	

V
	

 2.7. Performance evaluation ... 25

Chapter 3. Methodology .. 33

 3.1. Data pre-processing: ... 34

 3.1.1 Data cleaning………………….………………..…………………………34

 3.1.2 Feature extraction………………….……………………………………....40

 3.1.3 Nominal-to-numerical conversion……….……………………………….41

 3.2. The proposed algorithm .. 43

 3.3. Complexity analysis ... 47

 3.4. Case studies .. 49

 3.4.1. Case study one (Wiley online library) .. 50

 3.4.2. Case study two (Engineering domain) .. 55

 3.4.3. Case study three (Social Sciences and Humanities domain) 56

 3.4.4. Case study four (Health science domain) .. 57

 3.4.5. Case study five (Physical Science domain) ... 59

 3.4.6. Case study six (Analitical Chemistry domain) 60

 3.4.7. Case study seven (Routers-21578) ... 60

 3.4.8. Case study eight (20 newsgroup) ... 60

 3.4.9. Case study nine………………………….……………………..……...61

 3.5 Existing algorithms……………………………………………………………61

	

	

VI
	

 3.5.1 Naïve Bayes algorithm………….……………………………………....61

 3.5.2 K-NN algorithm……………………….………………………………... 62

Chapter 4. Results .. 63

 4.1. The proposed algorithm ... 63

 4.1.1. Feature extraction .. 63

 4.1.2. 5-fold cross validation ... 64

 4.1.3. Case study one (Wiley online library) .. 65

 4.1.4. Case study two (Engineering domain) .. 67

 4.1.5. Case study three (Social sciences and humanities) 68

 4.1.6. Case study four (Health domain) ... 69

 4.1.7. Case study five (Physical sciences) .. 70

 4.1.8. Case study six (Analitycal chemistry) ... 71

 4.1.9. Case study seven (Routers-21578)………….……………………….…..72

 4.1.10. Case study eight (20 newsgroup)……………………….………………72

4.1.11. Case study nine (the distributions of the error rate)……………………………73

 4.2. Existing algorithm (Method A: Naïve Bayes algorithm) 75

 4.2.1. Training stage……………………………….………….…………….….75

 4.2.2. Testing stage……………………………………………………………..76

 4.2.3. Results……………………………………………...……………………..79

	

	

VII

 4.2.3.1. Sigle label classification…………………………….………………79

 4.2.3.2. Multi-label classification……………………………….………......84

 4.3. Existing algorithm (Method B: K-NN algorithm)88

 4.4. Classification of parent class92

Chapter 5. Discussion .. 94

Chapter 6. Conclusion ... 100

References ... 102

	

	

VIII

List of Tables

Table 2.1 Macro-averaging and micro-averaging of the performance criteria on the

data set with l classes [60]. .. 28

Table 3.1The list of StopWord used in the classification procedure 35

Table 3.2 Sample of cleaned books titles .. 52

Table 3.3 Sample of the words and their associated stem numbers. 53

Table 3.4 Structure of the Engineering domain .. 56

Table 3.5 Structure of the Social Sciences and Humanities domain 57

Table 3.6 Structure of the Health Science domain .. 58

Table 3.7 Structure of the Applied Science area ... 59

Table 4.1 Macro-Micro averaging measures ... 65

Table 4.2 The error rate for all the different classes using single label classification.80

Table 4.3 The error rate for all the different classes using multi-label classification..85

Table 4.4. Results obtained with KNN algorithm ... 89

Table 4.5. Errors obtained in case of parent classification .. 93

	

	

IX

List of Figures

Figure 1.1. An example of a DAG-structured class hierarchy as presented in [2] 1

Figure 2.1. The structure of the naive Bayes network. ... 8

Figure 3.1. Flowchart of the Porter Stemming algorithm ... 40

Figure 3.2. Pre-Processing phases on an example .. 42

Figure 3.3. Sample of pre-processed training examples ... 42

Figure 3.4. Methodology work flow ... 44

Figure 3.5. Classification tree……………………………………….………………45

Figure 3.6. Books domain and sub-domains ... 49

Figure 3.7. Representing animal domain and sub-domains .. 50

Figure 3.8. Feature extraction workflow ... 55

Figure 4.1. 5 fold – cross validation .. 65

Figure 4.2. Books full domain error rate. .. 67

Figure 4.3. Engineering domain error rate………………..……………………..…....68

Figure 4.4. Social sciences and Humanities error rate. ... 69

Figure 4.5. First level classification .. 70

Figure 4.6. Second level classification .. 71

	

	

X
	

Figure 4.7. Third level classification .. 71

Figure 4.8. Routers-21578 data set error rate .. 72

Figure 4.9. Error in class hierarchy in the Engineering domain…………………..……72

Figure 4.10. Error distributions over hierarchy………………………………….……..75

Figure 5.1. Findings of experiments 2, 3, and 4. ... 96

	

	

XI

List of Symbols

HMC – Hierarchical Multi-label Classification

DAG – Directed Acyclic Graph

SVM – Support Vector Machine

KNN – K-Nearest Neighbor

MLNP- Mandatory Leaf Node Problem

NMLNP- Non Mandatory Leaf Node Problem

TAN – Tree Augmented Naïve Bayes

CL – Chow and Liu

NN – Neural Network

RF – Random Forest

OSH – Optimal Separating Hyper plane

DBT – Double Binary Tree

BT – Binary Tree

DST – Dempster Shafer Theory

SMO – Sequential Minimal Optimization

CSSA – Condensing Sort and Selection Algorithm

CSSAG- Condensing Sort and Selection Algorithm for the DAG-structured hierarchies

	

	

XII

HiBLADE- Hierarchical Multi-label Boosting with Label Dependency

LP – Label Power set

RAKEL – Random K-Label set

MLKNN – Multi label K-Nearest Neighbor

LIFT – Multi label learning based on Label Specific Features

MLSF – Multi level Classification based on Specific Features

PIPL – Meta Path based Instance and Label Correlation

BSVM – Binary Support Vector Machine

ECC – Ensemble of Classifier Chains

MLCBR – Multi-label Classification based on Case-Based Reasoning

CBR – Case Based Reasoning

PRE – Probabilistic Reuse based on Experience

PR – Probabilistic Reuse

BCC – Bayesian Chain Classifier

MLP – Multi Layer Perceptron

HMCLMLP – Multi-label Classification with Local Multi-layer Perceptron

PRCURVES – Precision Recall Curves

PCT – Predictive Clustering Tree

LDA – Latent Dirichlet Allocation

	

	

XIII

TP – True Positive

TN – True Negative

FP – False Positive

FN – False Negative

CGI – Carnegie Group Inc.

PCA – Principle Component Analysis

ANN – Artificial Neural Networks

KDE – Kernel Dependency Estimation

DT – Decision Tree

IDF – Inverse Document Frequency

	

1 	

	

 Introduction

The main goal of a classification induction process is to find the mechanism

(rules) able to place an example or a stream of examples into sets of categories called

classes. In the case of multi-label classification induction, an example is allowed to

belong to more than one class at a time, and the classes are hierarchically ordered.

This is referred to as Hierarchical Multi label Classification (HMC). The

classification of a library collection (where book titles represent the examples and

each of the scientific field represents a class) is an example of an HMC problem. The

class-to-class relations are defined by a Directed Acyclic Graph (DAG) (Figure 1.1)

which indicates that there are no cycles. The nodes and the edges define the structure

of the network, and the conditional probabilities are the parameters to give the

structure to the graph [1].

Figure 1.1: An example of a DAG-structured class hierarchy as presented in [2]

In this research, the focus is on the HMC problem, with emphasis on several

case studies used for drawing observations and reaching general conclusions. Aiming

	

2 	

	

to build a proper induction system for these problems, the top down approach was

preferred. It started by inducing a classifier for each class of the highest level of the

DAG and continued downward by employing the higher-level classifiers when

creating the training sets for lower-level classifiers.

The scope was to develop a proprietary methodology and algorithm and

compare it with a couple of many popular algorithms including Support Vector

Machines (SVM) [3-5], K-Nearest Neighbor (KNN) [6] and Naïve Bayes [7]. The

comparative study consisted in: i) classifying examples into hierarchically ordered

classes and ii) finding their inter-class relation.

As the work in this research progressed and as recommended by [2], we

realized that HMC’s performance has to be evaluated along somewhat different

criteria than those used in classical machine learning. For example, let C be a set of

classes to which an example X belongs to. A perfect classifier will label X with all

classes from C, never suggesting any class from outside C; moreover, an HMC

usually requires that any X that has been labeled with C! should also be labeled with

all ancestors of C! in the class hierarchy. To be able to reflect these requirements in

performance evaluation, an adequate extensions of precision and recall introduced by

Clare et al. [8] was used.

1.1. Problem Statement

A graph mainly consists of a set of nodes, N, and a set of edges, E, where an

edge is an ordered pair of nodes, (N!, N!) ∈ E ⊆ {N × N }. In this pair, Np is known

as a parent, and Nc as a child. A path (Na → Nc) from an ancestor (Na) to a child (Nc)

is referred to be a series of edges, {(𝑁!, 𝑁!), (𝑁!, 𝑁!), . . . , (𝑁!!!, 𝑁!)} in a way that

	

3 	

	

 𝑁! = Na and Nn = Nc. The existence of a path in a DAG, is Na → Nc, guarantees the

non-existence of the opposite-direction path, Nc → Na. A leaf node is known to be a

node without any child, and a root node is known to be a node without any parent.

In this research, this problem is addressed by considering a set of class labels

(C) whose mutual relations are specified by a class hierarchy (H) which has the form

of a DAG in which each node represents only one class.

X ⊂ 𝑅! is a finite set of examples, each described by a set of p numeric

attributes. We assume that each xi ∈ X is assigned a set of class labels, L = {𝐶! , ..., 𝐶!

} ⊆ H (all classes belong to the given class hierarchy). An example belonging to class

Cc is assumed to also belong to all Cc’s ancestor classes (Ca). This property is called

“hierarchical constraint”.

There are two versions of the hierarchical classification task: i) the Mandatory

Leaf-Node Problem (MLNP), where only the leaf-node classes are used and; ii) the

Non-Mandatory Leaf Node Problem (NMLNP), where an example can be labeled

with any class from the given class hierarchy. Considering the class hierarchy from

Figure 1.1, MLNP permits an example to be labeled only with a subset of {C1.1,

C2.1, C2.2.1, C2.2.2}, but NMLNP allows also the other class labels (e.g., C1 or

C2.2). This research focuses on the general NMLNP, because the examples are

assigned to any node in the hierarchy.

Two main questions were addressed in this research:

• Suppose that a machine learning algorithm has already induced classifiers for

some highest-level classes. Does this facilitate any future attempts at the

	

4 	

	

induction of lower-level classes? For instance, if an example was classified to

a lower level class, can this example belong to the parent and grandparent

classes?

• Turning this upside down, suppose we know the lowest-level classes. Can this

be exploited in the induction of the parents of these classes? For instance, if an

example was classified in the upper level class, can this example be a parent of

the lower level classes?

Aiming to answer these questions, a proprietary algorithm will be built. It will

test whether an example is classified into its corresponding child and grandchild, as

well as if the grandchild is belonging to its accurate parent and grandparent. The focus

is on the inter-class relations and we want to look at the parent-child and child-parent

relations, this aspect representing the main contribution of this study.

The significance of the research is the motivation for the use of machine

learning in digital libraries which can be defined as follow:

• The digital library needs to be able to identify all documents relevant to a

user’s query. This function is sometimes supported by an indexing system in

which each document is tagged with the labels of all the topics it represents.

• The indexing system is relatively easy to create in a small collection: an expert

reads each single document, and then decides which topics it represents.

• In large collections, this might be expensive and clearly impossible if

hundreds of thousands of documents are added to the library every week, or

even on a daily basis.

	

5 	

	

• In this latter case, one solution is to classify manually only a subset of the

documents, and then employ the training set, to obtain the induction of a

classifier.

• The induced classifier then labels those documents that have not been

classified manually.

• The principle can be applied to other domains, not just digital libraries.

The main research question is the following: how many documents should we

classify manually if we want to induce a high-performance classifier? To put the

question in another format: How much can be gained from the use of machine

learning? For example, suppose we have 106 documents. If we manually classify only

a few, the induced classifier will over fit the training examples, and thus perform

poorly on the remaining documents. The situation will improve if the training set

consists of about 10% of the collection or more; but then, the price of manual

classification will become prohibitive. This motivates an experimental study whose

goal is to identify the right size of the training set, and this is what we want to do in

this research.

Possible conclusions:

• It may turn out that only a small percentage of all examples are enough for the

induction of a relatively high-performance classifier. In this case, the use of

machine learning is justified.

• Conversely, it may turn out that even using 50% of the examples for training

	

6 	

	

is not enough. In this case, machine learning does not seem to help.

• Most likely, the observed result will be somewhere between these two

extremes.

• We might want to verify if the observation is the same in each of the studied

experimental domains. This means, we want to repeat this experiment for

several different domains.

	

7

	

Background

Over the past few years, studies of induction from multi-label examples

have targeted two specific strategies: induction of sets of binary classifiers, and

induction of one large multi-label classifier. For the induction of sets of binary

classifiers, mechanisms based on Bayesian theory were studied by Friedman et al.

[7], and McCallum and Nigam [9]. The latter was investigated by Baoli et al. [6],

and the currently popular SVM were discussed by Joachimis [4] and Kwok [10].

Unfortunately, binary classifiers ignore inter-class relations, which sometimes lead

to performance degradation. In this study, the focus is on these inter-class relations.

2.1 Bayesian Networks:

The Naïve Bayes classifier learns (from training data) the conditional

probability of each attribute A! given the class label C. Classification is then done by

applying Bayes rule to compute the probability of C given the particular instance of

A! , . . . , A! , and then predicting the class with the highest posterior probability. This

computation is rendered feasible by making a strong independence assumption: all the

attributes A! are conditionally independent given the value of the class C. The term

independence indicates the probabilistic independence that is, A is independent of B.

A naive Bayesian classifier has the simple structure shown in Figure 2.1. This

network captures the main assumption behind the naive Bayesian classifier, namely,

that every attribute (every leaf in the network) is independent from the rest of the

	

8

	

attributes, given the state of the class variable (the root in the network). Thus, it is said

that the performance of naive Bayes is somewhat due its dependency [9].

Figure 2.1: The structure of the naive Bayes network.

 Friedman et al. [7] evaluated several approaches for inducing classifiers from

data based on the theory of Bayesian networks. They presented a method they call

Tree Augmented Naive Bayes (TAN), which outperforms the base algorithm, and at

the same time maintains the computational simplicity (with no search involvement)

and robustness that characterize Naive Bayes. Their empirical evaluation included

TAN and Chow and Liu (CL) multi-net classifier [11]. CL describes a procedure for

constructing a Bayesian network from data. Such procedure reduces the problem of

constructing a maximum likelihood tree to finding a maximal weighted spanning tree

in a graph. The problem of finding this type of tree is to select a subset of arcs from a

graph such that the selected arcs constitute a tree and the sum of weights attached to

the selected arcs is maximized. Both TAN and CL multi-nets reflect a good tradeoff

between the quality of the approximation of correlations among attributes and the

computational complexity in the learning stage. The learning procedures are

	

9

	

guaranteed to find the optimal tree structure, and, as the experimental results show,

they perform well in practice against state-of-the-art classification methods.

 McCallum and Nigam [9] aimed to clarify the confusion between two first-order

probabilistic models (making the naïve Bayes assumption applied for text

classification) by describing their differences and details. The first uses a multivariate

Bernoulli model (a Bayesian Network with no dependencies between words and

binary word features as in [13], [14]), while the other uses a multinomial model (a

unigram language model with integer word counts as presented in [15, 16]). The

results on five text corpora indicated that the multivariate Bernoulli performs well

with small vocabulary sizes, but that the multinomial version usually performs even

better at larger vocabulary sizes providing on average a 27% reduction in error over

the multivariate Bernoulli model at any vocabulary size.

2.2 K-Nearest Neighbor:

In a text categorization system based on the K-Nearest Neighbor algorithm

(KNN), k is the most important parameter. To classify a new document, the k-nearest

documents in the training set are first determined. The prediction of categories for this

document can then be made according to the category distribution among the k

nearest neighbors. Generally speaking, the class distribution in a training set is not

even; some classes may have more samples than others. The system's performance is

very sensitive to the choice of the parameter k. And it is very likely that a fixed k

value will result in a bias for large categories, and will not make full use of the

information in the training set [6].

Baoli et al. [6] studied a text categorization system based on KNN, and an

	

10

	

improved KNN strategy (in which different numbers of nearest neighbors for different

categories are used instead of a fixed number across all categories) was proposed. The

numbers of nearest neighbors selected for different categories are adopted to their

sample size in the training set. Experiments on two different datasets showed that the

proposed approach is less sensitive to the parameter k than the traditional ones, and

can properly classify documents belonging to smaller classes when employing a large

k. The strategy is more efficient with cases where estimating the parameter K via

cross-validation is not possible and the class distribution of a training set is skewed.

K- KNN method is often used in text document classification. It is considered

as the simplest of all machine learning algorithms. An object is classified by a

majority vote of its neighbors, with the object being assigned to the class most

common amongst its k nearest neighbors. The accuracy of the k-NN algorithm is not

guaranteed if the feature scales are not consistent with their importance. Therefore, it

is sensitive to the local structure of the data. Random Forest (RF) classifier can handle

irrelevant feature and gives estimate of what variables are important in the

classification [17].

2.3 Random Forest:

Neural network (NN) based approaches are applicable to multilevel non-linear

problems. The variables transformation is automated in the computational process.

The main disadvantage of NNs is the fact that they are slow when many training data

sets exist. Therefore, they are not suitable in all cases of classification problems. On

the other hand, RF can handle thousands of input data, faster than other methods and

in the same time avoid model over fitting [17].

	

11

	

In [17], Aung and Hla proposed a multi-category classification for web pages

by using RF classifier. The accuracy of the proposed approach was compared with

decision tree classifier using the same yahoo web pages, the results showing that the

proposed approach was suitable for multi-category web page classification.

Wang et al. [18] goal was to predict DNA-binding residues directly from

amino acid sequence data using RF. Previous methods have been reported for

predicting DNA-binding. For example, Ahmad et al. [19] analyzed the structural data

protein-DNA complexes, and used the amino acid sequences to train NNs for DNA-

binding site prediction. Yan et al. [20] constructed Naïve Bayes classifiers using the

amino acid identities of DNA-binding sites and their sequence neighbors. However,

the prediction accuracy was low in these studies, and this is because amino acid

sequences were directly used for classifier construction. It was found that classifier

performance was significantly improved by the use of biochemical features for input

encoding, and the SVM classifier outperformed the NN predictor [21, 22].

RF learning algorithm, has the capability of handling large number of input

variables and avoiding model over fitting [23]. The results from this study indicate

that DNA-binding site prediction can be significantly improved by using the RF-

based approach with biochemical features and several new descriptors of evolutionary

information for input encoding.

Yang et al. [24] investigated the possibilities of applying RF in machine fault

diagnosis and proposed a hybrid method combined with genetic algorithm to improve

the classification accuracy. The application research on RF is important and necessary

because of its fast execution speed, the characteristics of tree classifier, and high

performance in machine faults diagnosis. The proposed method is demonstrated by a

	

12

	

case study on induction motor fault diagnosis. Experimental results indicate the

validity and reliability of the RF-based fault diagnosis method, a high accuracy rate of

diagnosis (98.89%) being obtained. The comparison result also showed that the

optimized RF-based method is competitive with other classification method.

In his study [25], Osman solved a binary classification problem, where an

ensemble of Decision Tree (DT) based classifiers is trained on-line, new images are

always added and the recognition decision is made without delay. The ensemble of

decision tree classifier is combined with forest classifier using averaging, generated

on-line RF classifier. To represent an object visual features, they first employ object

descriptor models based on bag of covariance matrices, and after that, they run their

online RF learner to select object descriptors and to learn an object classifier. It was

considered how machine learning models for object recognition categories can build

‘incrementally’ or ‘on line’, so that new images were continuously added and the

recognition decision was made without delay. The main computational advantage in

using RF classifier is that each DT classifier can be trained independently from each

other and in parallel. Results showed superior performance with the standard RF,

Adaboost, and SVM classifier.

2.4 Support Vector Machine:

SVM aims to fit an Optimal Separating Hyperplane (OSH) between classes by

focusing on the training samples that lie at the edge of the class distributions. The

OSH is oriented such that it is placed at the maximum distance between the sets of

support vectors, which leads to a more accurately generalization and training error

minimization, similar to NNs [26].

	

13

	

Joachims [4] introduced the SVM for text categorization from examples by

analyzing particular properties of learning with text data. Practical results showed that

SVM's achieved good performance on text categorization tasks, substantial

improvements over the currently best performing methods being observed. Kwok [10]

studied SVM in text categorization because it allows easy incorporation of new

documents into an existing trained system. Also, dimension reduction is optional with

SVM's. Therefore, an SVM adapts efficiently in dynamic environments that require

frequent additions to the document collection. The author investigated a different

approach of integrating both dimension reduction and classification. The study

showed the SVM’s characteristics that make it very useful to the problem of text

categorization and of information retrieval in general. SVMs can obtain better results

by using them as pre-processing tools.

The binary SVM can be extended for a one-shot multiclass classification. The

one-shot multiclass SVM has a relative advantage to the binary SVM-based

approaches. This advantage is represented by the fact that it needs to be optimized

only once. The multiclass SVM classification of all classes occurs in a single step

[26].

Mathur and Foody [26], aimed to evaluate the multiclass and binary-based

SVM approaches for the derivation of a multiclass land cover classification from

remotely sensed data. They suggested two approaches for multi class classification by

SVM:

• “one-against-all” approach, where a set of binary classifiers (each trained to

separate one class from the rest) is undertaken and each pixel is allocated to

	

14

	

the class for which the largest decision value was determined.

• “one-against-one” approach, where, a series of classifiers are applied to each

pair of classes, with the most commonly computed class label kept for each

pixel.

For the one-shot multiclass SVM approach, parameters need be optimized

only once, while with the one-against-one and one-against-all binary strategies a

series of analysis are required. The one-against-all and one-against-one strategies

required five and ten optimizations, respectively. Also, the smallest number of

support vectors was used with the one-shot multiclass SVM classifier, while other

strategies for multiclass classification required a larger number of support vectors.

From the results, it was obvious that the one-shot multiclass SVM classification

yielded the most accurate classification. One problem observed was that the one-

against-all approach was not able to label all cases appropriately.

Liu et al. [27] proposed a multi-class classification method of SVM based on

double binary tree (DBT-SVM). Each sub-classifier of BT-SVM is modified and after

unknown samples are classified by the modified BT-SVM, the negative output of its

final sub-classifier can be classified again by adding an auxiliary BT-SVM. Thus, the

misclassified samples mixed in the negative output can be classified correctly.

Existing problem in BT-SVM method include:

• 'Irreversibility', which occurs once a sub classifier mistakes a positive sample

for a negative one, so the result is incorrect and there is no chance for re-

classification.

• 'Error accumulation' phenomenon. It appears when each sub-classifier in the

	

15

	

hierarchy of a binary tree will mistake some positive samples for negative

ones and then input them into the next-level sub-classifiers, resulting in an

accumulation of the misclassified samples in the samples waiting for

classification.

• The upper sub-classifiers in the binary tree structure of BT-SVM have greater

influence over the generalization capacity of the overall classification model.

DBT-SVM turned to be able to provide a higher general classification

accuracy compared with the BT-SVM. It improves the classification accuracy of the

earlier classified classes while lowers the classification accuracy of the latter

classified classes. Therefore, the classification order of the classes should be decided

according to their importance without applying randomness.

Kubat et al. [28] proposed a new technique for induction in multi-label text

classification domains. They applied a well-known boosting algorithm,

AdaBoost.MH, as a “baseline induction algorithm” for the induction of a set of sub

classifiers, each from the same training set. In addition, they developed a new fusion

method around the principles of the Dempster-Shafer Theory, called DST-fusion.

Experiments showed that DST-fusion can lead to impressive savings in the

computational time without impairing the classification performance. DST-Fusion

and “weighted sum” outperformed the more traditional methods of plain voting and

weighted majority voting. Moreover, when comparing DST-Fusion with a more

traditional approach, it was observed that, the Multi-Label C4.5 (based on induction

of decision trees), might be a better choice.

	

16

	

2.5 Hierarchical Multi-label Classification Strategies

Silla and Freitas [29] explored the solutions to the HMC problems and

presented three fundamental strategies: 1) flat classification, 2) top-down approach

“local classification”, 3) the “big-bang” approach or global classification.

2.5.1 Flat classification

The advantage of this strategy is that it enables the use of traditional machine-

learning techniques such as neural networks, decision trees, or SVM to be

implemented in the HMC as reported by [30-32]. Basically it ignores the class

hierarchy and deals only with the leaf-node classes (as if the problem were MLNP),

whether by a single multi-label classifier or by a set of binary classifiers (a separate

one for each leaf node). If the leaf-node class label is known for each example, this

strategy is possible. Besides, if the nature of the application seems to allow the user to

afford the inability to identify non-terminal classes.

2.5.2 Top-down approach (local classifier):

The most common approach in HMC induction is the local classifier. In the

simplest scenario, for each node in the DAG-specified class hierarchy, a separate

(local) classifier is induced, and the processing is started by creating a whole

hierarchy of classifiers, from top levels going downwards.

The main advantage of this method is simplicity. On the other hand, the

approach tends to suffer from “error propagation”, which means that

misclassifications of the higher- level classes are propagated to the lower levels.

The first experiments with this approach were provided by Koller and Sahami

	

17

	

[14] by choosing Naive Bayes to induce each individual class. The authors

experimented with tree-structured class hierarchies with no more than one parent for

any node and limited to just two levels.

Fagni and Sebastiani [78, 79] compared four different policies (Sibling, ALL,

BestGlobal, and BestLocal) to generate a set of binary training data. Tree-structured

hierarchical versions of boosting and SVM called TreeBoost and TreeSVM were

used. The best results were obtained with the Sibling policy in which the negative

training examples of the ith node are all positive examples of its Sibling nodes in the

hierarchy.

This strategy was applied to text classification by Sun and Lim [33], where the

class hierarchy was a plain tree structure. They induced two SVMs for each class: a

local classifier and a sub-tree classifier. An example is labeled as Ci by the local

classifier, while the sub-tree classifier decides whether or not this example should be

passed to ci’s sub-classifiers. This approach was extended to domains with DAG-

structured class hierarchies, by Nguyen et al. [34], the DAG hierarchy being

transformed into a set of tree hierarchies. Experimental results indicated high

classification performance as well as high computational costs.

Looking to further improve the performance, Secker et al. [35] used several

induction algorithms for each node of the hierarchy: Naive Bayes, SMO, 3-NN, etc.

Ten classifiers were trained for each node, and the one with the best classification

results was selected. This improved classification accuracy, but the computational

costs were even higher than in the previous attempt.

Bi and Kwok [36] applied the Kernel Dependency Estimation (KDE) to

	

18

	

reduce the number of classes in the hierarchy during the training process. This

procedure was applied because the number of classes in the hierarchy is usually

unmanageable. The authors proposed an algorithm called “Condensing Sort and

Selection Algorithm (CSSA)” for the tree structured hierarchies and, then, extended it

to the CSSAG algorithm for the DAG-structured hierarchies. However, they did not

report experimental results regarding induction time and the number of reduced

classes.

Alaydie et al. [37] proposed a framework called “HiBLADE (Hierarchical

multi-label Boosting with Label Dependency),” applied to tree-structured hierarchies.

The classifier for each class is a boosting-type algorithm, such as ADABOOST,

where the new model for each boosting iteration is updated by utilizing the proposed

Baysian correlation.

2.5.3 The “big-bang” approach (global classifier):

Some authors preferred to induce one big (global) classification model to

cover the entire class hierarchy, instead of inducing a separate binary classifier for

each node. In this manner, mutual interdependencies of the classes can be easily taken

into account, and the global classifier is often smaller than the total of the local

classifiers.

Clare and King [8] developed a hierarchical extension to the decision-tree

generator C4.5 [38] and applied it to functional-genomics data. Their system is known

as HC4.5, a mechanism for weighing the entropy formula (in order to give higher

priority to more specific classes) being induced.

Seeking to make the decision-tree paradigm applicable to hierarchical

	

19

	

domains, an attempt was reported by Blockeel et al. [39] whose Clus-HMC is a

hierarchical version of the earlier “predictive clustering tree” (PCT) [40]. Ven et al.

[80] improved Clus-HMC so it could be used in DAG-specified class hierarchies.

Schietgat et al. [12] proposed an ensemble version of the algorithm Clus-HMC-ENS.

Although the ensemble concept can improve classification accuracy, its

computational costs are much higher than those of the original Clus-HMC.

A global-approach hierarchical framework based on the K-Nearest Neighbor

classifier (k-NN), was proposed by Pandey et al. [41]. The system’s improvements

include: i) a Lin’s semantic similarity measure used as a distance measure; ii) the

prediction function of the i-th class incorporates the inter-relationship score of the i-th

class to other classes in the hierarchy; and iii) the mechanism to filter insignificant

class inter-relationships was suggested.

Lo et al. [42] proposed a basis expansion model for multi-label classification,

where a basis function is a Label Power set (LP) classifier trained on a random k-label

set. LP [43] method is a multi-label learning algorithm which basically reduces the

multi-label classification problem to a single-label multi-class classification problem

by dealing with each distinct combination of labels in the training set as a different

class. Random k-Label sets (RAKEL) [44] has introduced to overcome the drawback

of the LP method. It randomly selects a number of label subsets from the original set

of labels and then uses LP for training the corresponding multi-label classifiers.

Experiments were conducted on ten benchmark datasets belonging to different

domains, including: scene, enron, cal500, major miner, medical bibtex, and four

versions of delicious (from dlc1 to dlc4). More details on these data sets are available

at the MULAN library website [45].

	

20

	

Qu et al. [46] proposed a Multi-Label classification algorithm based on label-

Specific Features (MLSF). The feature density on the positive and negative instances

set of each class was first computed and after that, the features of high density from

the positive and negative instances set of each class were selected. The intersection

was taken as the label-specific features of the corresponding class. Finally, the multi-

label data was classified on the basis of label-specific features. The classifiers

induction process of MLSF is similar to the original binary classifiers. Given an

unlabeled instance xu ∈U , the feature sets for each class label are first rebuild based

on the label-specific features, and then the corresponding classifier is used to predict

whether it has the label or not. The proposed MLSF is compared with three multi-

label learning algorithms, including ML-KNN, LIFT, and Rank-SVM. The

experiments were employed on both regular-scale and large-scale. For the results,

common evaluation criteria for multi-label classification were used (hamming loss,

one-error, coverage, and average precision). It is observed, that the performance of

MLSF is comparable to that of LIFT on the regular-scale data sets and large-scale

data sets and that MLSF and LIFT algorithms perform significantly better than ML-

KNN and Rank-SVM.

Kong et al. [47], used the heterogeneous information networks to simplify the

multi-label classification process. They focused on extracting the relationships among

different class labels and data samples by mining the linkage structure of

heterogeneous information networks. These relationships can be then used to

effectively infer the correlations among different class labels in general, as well as the

dependencies among the label sets of data examples that are inter-connected in the

network. The proposed multi-label collective classification algorithm (called PIPL)

	

21

	

was tested on a bio-informatic dataset SLAP [48], which is a heterogeneous network

containing integrated data related to chemical compounds, genes, diseases, side

effects, pathways etc.

2.6. Other Classification Methods

Other existing multi-label classification methods include:

• BSVM (binary SVM); ECC (multi-label classification + ensemble);

• PISl (binary decomposition + meta-path based instance correlation):a

collective classification approach [49], where instance correlations are from

heterogeneous network;

• Icml (simple label correlation + instance correlation in homogeneous

network): this method was proposed by Kong et al. [50] which exploit

relational features for inter-instance dependencies based on homogeneous

network for multi-label collective classification;

• PIml (simple label correlation + meta-path based in- stance correlation): a

multi-label collective classification approach extended from PIsl [49] by

adding relational features according to inter- instance-cross-label

dependencies for multi-label collective classification [50];

• PIPL (meta-path based instance and label correlation): a method for multi-

label collective classification in heterogeneous information networks. The

only difference between PIPL and PIml is that PIml does not consider the

meta-path based label correlation.

	

22

	

In order to achieve a reduction in time costs without compromising accuracy,

Nicolas et al. [51] proposed the MLCBR algorithm which is a system for multi-label

classification based on Case-Based Reasoning. In their study, they have investigated

the characteristics of the most popular systems in this area, MLKNN (Multi-Label K

Nearest Neighbor) and RAKEL (Random L Label sets), where they have observed

that the main drawback of these specific systems is the time required. The focus was

on the retrieval and reuse stages of CBR because these are the features that lead

toward their objectives, namely the reduction of computational time and improving

the accuracy. The retrieval stage of Multi-label Case-Based Reasoning Algorithm

(MLCBR) is based on MLKNN where the K most similar cases to the case study are

recovered of the case memory. In the reuse phase two approaches were proposed.

Probabilistic Reuse (PR) is the first option, where the final classification is made

through a voting process in which all the recovered cases are equally weighted. The

second option is Probabilistic Reuse, which is based on Experience (PRE). It adds the

concept of experience to better weight the recovered cases. Results of the proposed

model were compared with other two competitive multi-label learning systems,

MLKNN and RAKEL, using seven synthetic dataset and three real-world datasets

used as benchmark by multi-label classification community (scene, emotions and

yeast). All the phases of the experimentation process obtain the accuracy values with

an average of the standard deviation of 10 independent executions of ten-fold cross-

validation process with different randomness seed.

Experiments show that, a level of accuracy equivalent to that obtained by a

competent system (MLKNN) and statistically has better results than the benchmark

(RAKEL). In both comparisons the computational time of the model is lower than the

	

23

	

one performed by previous platforms.

Chain classifiers have been recently proposed to address some problems such

as, high computational complexity, and ignoring possible dependencies among

classes. In chain classifier each classifier in the chain learns and predicts the label of

one class given the attributes and all the predictions of the previous classifiers in the

chain.

Sucar et al. [52], introduced a method for chaining Bayesian classifiers that

combines the strengths of classifier chains and Bayesian networks for multi-label

classification. A Bayesian network is induced from data to represent the probabilistic

dependency relationships between classes, and constrain the number of class variables

used in the chain classifier by considering conditional independence conditions. A

Bayesian Chain Classifier (BCC) makes two basic assumptions that are, a Bayesian

network can represent the class dependency structure given the features, and the total

abduction is approximated by the concatenation of the most probable individual

classes. A chain classifier can be constructed by inducing first the class that does not

depend on any other class and then proceed with its children. Thus, the constructed

steps are: create an order of classes in the chain based on the dependencies between

classes given the features. These dependencies can be represented as a BN, and

therefore simpler base classifiers can be created by considering conditional

independencies between classes. Different Bayesian chain classifiers were tested on 9

benchmark multi-label data sets; each of them with different dimensions. For

performance evaluation, several metrics were used to evaluate the performance of

multi-label classifiers: Mean accuracy over the d class variables (accuracy per label),

Global accuracy over the d-dimensional class variable (accuracy per example, also

	

24

	

called subset zero-one loss), Multi-label accuracy, also called Jaccard measure, and

finally F-measure. The results showed that a random chain order considering the

constraints imposed by a Bayesian network with a simple tree-based structure could

have very competitive results in terms of predictive performance and time complexity

against related state of the art approaches.

Cerri et al. [53] investigated a new local-based classification method that

incrementally trains a Multi-Layer Perceptron (MLP) for each level of the

classification hierarchy. In a given level, a neural network makes predictions that are

used as inputs to the neural network responsible for the prediction in the next level.

Hierarchical Multi-label Classification with Local Multi-Layer Perceptron

(HMC-LMLP) is a local-based HMC method that associates one Multi-Layer

Perceptron (MLP) to each classification hierarchical level. This method is basically

designed to be used in tree-structured hierarchies. The method trains the MLPs

incrementally on each level, and after the training process of one neural network for a

specific level, the predictions of this network for the training dataset are used as

inputs for the training of the next neural network associated with the next hierarchical

level. This process is continuous until reaching the last level of the hierarchy.

The experiments used twelve free available [54] datasets associated with the

task of protein function prediction. Precision–Recall curves (PR-curves) are used as

the evaluation measure for the methods.

The proposed method results were compared with the results obtained by one

state-of-the-art decision tree learner and two other decision-tree based methods, all

three based on Predictive Clustering Trees (PCT). The experimental data showed that

	

25

	

HMC-LMLP can achieve competitive results compared with the global (state-of-the-

art) version of the PCT-based methods, Clus-HMC, regarding AU(𝑃𝑅𝐶).

Latent Dirichlet allocation (LDA) [55] is a generative probabilistic model. The

LDA underlying idea is that documents are represented as random mixtures over

latent topics, and each topic is characterized by a distribution over words. In the text

classification, a document is classified into two or more classes. As in any

classification problem, by using LDA module for each class, it could obtain a

generative model for classification. LDA model is one of the most successful topic

discovery models used in the statistical text analysis literatures as it uses plenty of

words generative approach to automatically find topic for documents.

Cross-validation [56] is a technique that estimates how a specific classifier

will generalize when used with a data set that is different than the one that the model

has trained. It basically partitions the data into n subsets and then uses n-1 of the

subsets for training the model, and the remaining set for testing the model. This

procedure will be repeated n times so by this, each of the subsets is used as a testing

set only once. Then, the results are averaged over the rounds to find the final

estimation.

2.7 Performance Evaluation

In order to evaluate the multi-label classifiers, different methods than the ones

specific to single-label problems are used because an example can be partially correct

or incorrect [57]. According to [43], the measures used for evaluation of multi-label

classification can be organized into two classes: i) bipartition based (includes example

based measures and label based measures) and ii) ranking based (evaluates measures

	

26

	

based on the ground truth of multi-label dataset). The example based measures

evaluate the bipartitions over all examples of the evaluation dataset, while the label

based measures divide the evaluation process into evaluations of each label [57].

In classical machine learning, the classifiers are usually evaluated by error-rate

estimates. This error is obtained by comparing the testing examples having a pre-

determined class labels with those class labels recommended by the classifier. This,

however, is not quite enough when dealing with domains where one class

significantly outnumbers the other [58]. For instance, if only 1% of the examples are

positive, then a classifier that labels all examples as negative will achieve 99%

accuracy.

For this latter case, other criteria are used, the most popular among them being

precision and recall. Let us denote by TP the number of true positives, by FN the

number of false negatives, by FP the number of false positives, and by TN the number

of true negatives. Precision and recall (which are example based measures) are

defined as follows:

𝑃𝑟 = !"
!"!!"

 (1)

 𝑅𝑒 = !"
!"!!"

 (2)

Precision is the percentage of truly positive examples among those labeled as

such by the classifier; recall is the percentage of positive examples that have been

recognized as such (“recalled”) by the classifier. Which of the two is more important

depends on the given domain. In order to combine them in a single formula, [59]

proposed F 𝜷 , where the user-specified parameter, 𝛽𝜖 0,∞ , quantifies each

	

27

	

component’s relative importance:

𝐹𝛽 = !
!!! × !" × !"
!! × !"!!"

 (3)

It would be easy to show that 𝛽 > 1 apportions more weight to recall while 𝛽

< 1 emphasizes precision. Moreover, F 𝛽 converges to recall if 𝛽 → ∞, and to

precision if 𝛽 = 0. If we do not want to give more weight to either of them, we use the

neutral 𝛽 = 1:

𝐹! =
! ×!" × !"
!"!!"

 (4)

 All this, however, applies only to domains where each example is labeled with

one and only one class.

F-measure is the harmonic mean between precision and recall [52]:

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = !
!

!!!!!
!!!!!

!
!!! (5)

where 𝑝!and 𝑟! are the precision and recall for 𝐶!. Here, the F-measure is calculated

per label and then averaged.

 Yang [60] proposed two methods to average the above metrics over multiple

classes: (1) macro-averaging, where precision and recall are first computed

separately for each class and then averaged; and (2) micro-averaging, where

precision and recall are obtained by summing over all individual decisions. Which of

the two approaches is better depends on the concrete application. Generally speaking,

micro-𝐹! weighs the classes by their relative frequency, whereas macro-𝐹! gives equal

weight to each class. The formulas are summarized in Table 2.1, where 𝑃𝑟!, 𝑅𝑒!, and

	

28

	

F1.j , stand for precision, recall, and F1 for the jth class (from l classes).

Table 2.1 Macro-averaging and micro-averaging of the performance criteria on the

data set with l classes [60].

 Hamming loss (an example based measure) [61] evaluates how many times an

example-label pair is misclassified, i.e., label not belonging to the example is

predicted or a label belonging to the example is not predicted. The smaller the value

of hamming_loss(h), the better the performance. The performance is perfect when

hamming_loss(h) = 0. This metric is defined as:

ℎ𝑎𝑚𝑚𝑖𝑛𝑔!"## ! = !
!

!
!

!
!!! ℎ 𝑥! ∆𝑦! (6)

where Δ stands for the symmetric difference between the two sets, N is the number of

examples and Q is the total number of possible class labels. Yi denotes the set of true

labels of examples xi and h(xi) denotes the set of predicted labels for the same

examples.

	

29

	

 The ranking loss [62] evaluates the average fraction of label pairs that are

disordered for the example. The metric is defined as:

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠(ℎ, 𝑥,𝑃!) =
!,!! ∈ !!× !! ! ! !! !! |

!! |!!|
 (7)

where h is a ranking model, x is a given instance, P the set of relevant labels, 𝜏 (𝜆!)

denotes the position of 𝜆! in the predicted ranking , 𝜏!!(𝑖) the label 𝜆 having

assigned position i.

Set error [42] evaluates a multi-label prediction as a whole. It evaluates the

percentage of predicted label sets that do not exactly match the true label sets.

The one-error [62] evaluates the performance from a restricted perspective,

since it only determines when the top-ranked label is relevant. In this case, the best

performance is reached when one-error is equal to 0, the smaller the value of the

error, the better the classification algorithm.

𝑂𝑛𝑒 𝑒𝑟𝑟𝑜𝑟 ℎ, 𝑥,𝑃! = 1 𝑖𝑓 𝜏!! 1 ∉ 𝑃!!
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (8)

where h is a ranking model, x is a given instance, 𝜏 (𝜆!) denotes the position of 𝜆! in

the predicted ranking , 𝜏!!(𝑖) the label 𝜆 having assigned position i, and P the set of

relevant labels.

Average precision [42] evaluates, for each relevant label, the percentage of

relevant labels among all labels that ranked above it. It can evaluate the algorithm as a

whole and, unlike the case if one-error, the higher its value, the higher the

performance is.

The coverage [63] evaluates on average how many steps are needed, to move

	

30

	

down the label list in order to cover all the proper labels of the example. Along with

one-error and average precision, this measure metric belongs to the ranking-based

measure class.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ℎ = !
!
 max 𝑟𝑎𝑛𝑘!

𝑦 ∈ 𝑌!
!
!!! 𝑥! ,𝑦 − 1 (9)

Here, h(xi) returns a set of proper labels of xi; h(xi,y) returns a real-value indicating

the confidence for y to be a proper label of xi; rankh(xi,y) returns the rank of y

derived from h(xi,y).

Another error that can be used for multi-label classification is the Mean

accuracy over the d class variables (accuracy per label) defined by Eq. 10 and Global

accuracy over the d-dimensional class variable (accuracy per example, also called

subset zero-one loss) defined by Eq. 11 [52].

 𝑀 − 𝐴𝑐𝑐 = !
!

𝐴𝑐𝑐! =
!
!

!
!

𝛿(𝑐!!" , 𝑐!")!
!!!

!
!!!

!
!!! (10)

where 𝛿 𝑐!!" , 𝑐!" = 1 if 𝑐!!"= 𝑐!" and 0 otherwise, and 𝑐!!" denotes the Cj class value

outputted by the model for instance i and 𝑐!" is its true value.

 𝐺 − 𝐴𝑐𝑐 = !
!

𝛿!
!!! (𝑐!! , 𝑐!) (11)

where 𝛿 (𝑐!! , 𝑐!) = 1 if 𝑐!! = 𝑐! and 0 otherwise. Therefore, we call for a total

coincidence on all the components of the vector of predicted classes 𝑐!! and the vector

of real classes 𝑐!

In [64], a multi-label accuracy measure called Jaccard measure was defined:

	

31

	

𝑀𝐿 − 𝐴𝑐𝑐 = !
!
 !!∧!!!

!!∨!!!
!
!!! (12)

where in the numerator, we count the number of coincidences of the two vectors (real

and predicted), and in the denominator, we count the number of labels covered by

some of both vectors.

In case of decision-tree methods, in order to obtain the final predictions, a

threshold value is employed. When classifying an example, if the corresponding

output value for a given class is equal or larger than the threshold, the class is

assigned to the example. Otherwise, it is not assigned to the example. Thus, the

choice of the “optimal” threshold value is a difficult task, because low threshold

values lead to many classes being assigned to the examples, resulting in high recall

and low precision. Moreover, larger threshold values lead to very few examples being

classified, resulting in high precision and low recall. In order to deal with this

problem, Precision–Recall curves (PR-curves) are used as the evaluation measure

[53]. To obtain a PR-curve for a given classification method are applied to the outputs

of the methods, and thus different values of precision and recall are obtained for each

threshold. Each threshold represents a point within the PR-space. The union of these

points forms a PR-curve, and then the area below the curve (AUPRC) is calculated.

Different methods can be compared based on their areas below the PR-curves.

a) Area under the average PR-curve:

Given a threshold value, a precision–recall point 𝑃𝑟𝑒𝑐,𝑅𝑒𝑐 in the PR-space can be

obtained using the following equations:

𝑃𝑟𝑒𝑐 = !"!!
!"!!! !"!!

 (13)

	

32

	

𝑅𝑒𝑐 = !"!!
!"!!! !"!!

 (14)

where i ranges over all available classes, corresponding to the micro-average of

precision and recall.

b) Weighted average of the areas under the individual PR-curves:

In order to calculate the weighted average of the areas under the individual PR-

curves, we first calculate the AUPRCi for each class separately, with i ranging from 1

to |C|. Afterwards, we obtain the 𝐴𝑈𝑃𝑅𝐶!using the following equation:

𝐴𝑈𝑃𝑅𝐶! = 𝑤! .𝐴𝑈𝑃𝑅𝐶!! (15)

where 𝑤! is used to weight the contribution of a class according to its frequency.

	

33

	

Methodology

Digital libraries provide a huge range of information including text, movies,

speeches, images, photos, books and others. This digital data provides large

collections of content which naturally leads to the need of powerful tools that

efficiently process, analyze, navigate, and browse the digital data [65]. Therefore, in

this work, different data sets from books digital libraries and other contents were

used. There are many digital libraries available online such as, Internet archive [66],

Google books [67], Open library [68], The New York public library [69], and Wiley

online library [70], Routers-21578 [71]. The Wiley Online Library [70] hosts the

world's broadest and deepest multidisciplinary collection of online resources covering

life, health and physical sciences, social science, and the humanities. Routers-21578

[71] is a collection appeared on the Reuters newswire in 1987.

 From the available sources Wiley Online Library [70], Routers-21578 text

categorization collection data set [71], and the 20 Newsgroups data set [72] were

chosen for the conducted experiments. Wiley Online Library hosts the world's

broadest and deepest multidisciplinary collection of online resources. It delivers

seamless integrated access to over 4 million articles in 1500 journals, over 14,000

online books, and hundreds of reference works, laboratory protocols and databases.

The documents in Routers-21578 [71] are organized and indexed with

categories by personnel from Reuters Ltd. In 1990, Reuters and CGI made the

documents available for research purposes to the Information Retrieval Laboratory of

the Computer and Information Science Department at the University of Massachusetts

	

34

	

at Amherst. There are multiple categories, and there are relationships among the

categories, therefore are many possible feature sets can be extracted from the text

The 20 Newsgroups data set [72] is a collection of approximately 20,000

newsgroup documents, partitioned across 20 different newsgroups, each

corresponding to a different topic. It has become a popular data set for experiments in

text applications of machine learning techniques, such as text classification and text

clustering.

Since the data set that is provided by the digital library is considered as raw

data, it may contain nominal attributes (un-necessary). Nominal attributes are defined

by providing a <nominal-specification> listing the possible values: {the, for, in, on,

edition, processes, systems...}. Also, a raw data set may contain many values that may

be missing, so it is necessary to do some pre-processing. Once pre-processing was

finished, a proprietary algorithm for multi-label class was implemented and compared

with some existing algorithms.

3.1. Data pre-processing:

This phase consists of the following: i) data cleaning; ii) feature extraction;

and iii) nominal to numerical conversion.

3.1.1 Data cleaning:

Removing un-necessary and meaningless words such as “introduction”,

“handbook”, “edition” etc., is done in this stage. Its role is to reduce the dimensions of

the dataset and to eliminate the elements that can create errors in the classification

algorithm.

	

35

	

Meaningless words with very high frequency are considered as stop words

[73], and these words are added to the Stop Word list. Removing such words will

result in better results and it will not affect the classification efficiency at the same

time. The Stop Word list are shown in Table 3.1.

Table 3.1: The list of Stop Word used in the classification procedure

a couldn't his or third

about cry how other this

above de however others those

across describe hundred otherwise though

after detail i our three

afterwards do ie ours through

again done if ourselves throughout

against down in out thru

all due inc over thus

almost during indeed own to

alone each interest part together

along eg into per too

already eight is perhaps top

	

36

	

also either it please toward

although eleven its put towards

always else itself rather twelve

am elsewhere keep are twenty

among empty last same two

amongst enough latter see un

amongst etc latterly seem under

amount even least seemed until

an ever less seeming up

and every ltd seems upon

another everyone made serious us

any everything many several very

anyhow everywhere may she via

anyone except me should was

anything few meanwhile show we

anyway fifteen might side well

anywhere fifty mill since were

	

37

	

are fill mine sincere what

around find more six whatever

as fire moreover sixty when

at first most so whence

back five mostly some whenever

be for move somehow where

became former much someone whereafter

because formerly must something whereas

become forty my sometime whereby

becomes found myself sometimes wherein

becoming four name somewhere whereupon

been from namely still wherever

before front neither such whether

beforehand full never system which

behind further nevertheless take while

being get next ten whither

below give nine than who

	

38

	

beside go no that whoever

besides had nobody the whole

between has none their whom

beyond Hasn't noone them whose

bill have nor themselves why

both he not then will

bottom hence nothing thence with

but her now there within

by here nowhere thereafter without

call hereafter of thereby would

can hereby off therefore yet

cannot herein often therein you

cant hereupon on thereupon your

co hers once these yours

computer herself one they yourself

con him only thick yourselves

could himself onto thin

	

39

	

In data cleaning, the input file is parsed line by line and each line is being split

into words by space character as a delimiter. Then each is getting its stem using the

Porter stemming algorithm [74].

The Porter stemming algorithm is a process for removing the commoner

morphological and inflexional endings from words in English. It is mainly used as

part of the normalization process that is usually done during processing information

retrieval systems. After the stemming process, each root is being searched in the list

of unwanted words and if that root exists in the unwanted words file, then the word

it's derivatives will be deleted from the input file. Finally, the line that has unwanted

words eliminated is reconstructed and pushed in a new file (Intermediate). The

scheme of this algorithm is presented in Figure 3.1.

	

40

	

Figure 3.1: Flowchart of the Porter Stemming algorithm [81]

3.1.2 Feature extraction:

Transforming the input data into the set of features is called feature extraction.

The features have to be chosen carefully. By that, the features set will extract the

	

41

	

relevant information from the input data in order to perform the desired task using this

reduced representation instead of the full size input [75].

In features extraction, the process starts by reading the intermediate file line

by line. Then, we find the stem of each word by searching in the stem file. If the stem

is found then the word is ignored and the process forwards to the next word. If that

stem is not found, then the count of features is increased by one and that stem is

added into the feature set. After that, that original word of that stem is written in the

output file. In order to find the relationship between the number of features and

number of example, the feature in this step are counted.

3.1.3 Nominal-to-numerical conversion:

To make the classification less computational expensive, the classes are

numbered and their corresponding meaning are defined. Also the extracted features

are transformed into numerical features usable for machine learning.

 Figure 3.2 shows an example of the pre-processing phases, where un-

necessary word (Handbook) is removed in the data cleaning and the remaining words

are extracted as representing the features. Figure 3.3 provides sample of pre-processed

training examples where the numbers before the “:” represents the book title features

and the numbers after the “:” represents the three level class representation

corresponding to the book titles.

	

42

	

Figure 3.2: Pre-Processing phases on an example

Figure 3.3: Sample of pre-processed training examples

	

43

	

3.2 The proposed algorithm

Once data pre-processing is completed, the data is stored in a pre-processed

file to be handled later as clean data. The proposed classifiers read from this data set

as follow: First, the system reads a set of the data set X. Then, the system reads

another set of data, let’s call it Z. This data is used for testing. After the classification

process is done, the error rate and the classification accuracy will be observed.

Let's call the set of misclassified examples Y. Then classifier must be trained

again. Because Y is smaller than Z a number of examples (E) must be added, where E

= Z - Y and the new training set is N where N = E + Y. The following example

clarifies how (N) is computed. If we have X=1000 examples for training, Z=1000

examples for testing, and we came out with Y=200 misclassified examples. So, we

need to include Y in the next training session. But because Y < Z, then we must to

add new set of data (E) where E = Z - Y and then we add Y to E to form (N).

The system reads another set of data, let's call it (V), and this is going to be

used for testing, so every example in the testing iteration i ∈ V!.

For every classification iteration, a training session will start again and a new

testing session V! will also go through the classifier. In Figure 3.4 a simplified schema

of the proposed approach is presented.

	

44

	

Figure 3.4: Methodology work flow

A common approach for building a reliable classifier is to split a data set in to a

training set and an independent test set, where the training set is used to develop the

classifier and the testing set is used to evaluate its performance. The common used

strategy is allocating 2/3rd of cases for training is nearly optimal for reasonable sized

data sets (n≥ 100) with strong signals [76]. According to this principle the workflow

is as following:

• Once the data it is cleaned, the algorithm reads it.

• The algorithm trains the classifier by assigning the feature numbers with every class

in the classification tree.

For example if data has a set of features (Computer = 1, Science = 2,

Machine = 3, Learning = 4, Algorithm = 5, Engineering = 6, Biology = 7,

Chemistry = 8), these features are assigned to each class according to a pre-

designed classification tree:

	

45

	

Class 1, features [1, 2, 3, 5, 8, 10]

Class 2, features [1, 5, 8]

Class 3, features [5, 8, 10]

and so on.

 Then, the classification tree might look as Figure 3.5.

Figure 3.5: Classification tree

• Once the features are assigned to classes, the testing set is introduced, every

word in the title being assigned to a class. The word might be assigned to

more than one class, but only to the ones belonging to the same grandparent.

Once a word cannot be classified in any class, it means, the feature of the

word is new, and the classifier needs to be re-trained. The error rate is

calculated if a word feature was miscounted or if a word was classified in a

wrong class. Macro- and Micro- averaging are used to calculate the error rate

in case a word was classified into a wrong class.

1	

2	
 4	

5	
 	
 6	
 9	
 10	

]1,5,8[

]1,2,3,5.8,10[

]5,8[
]5[
]10[
]8[

]5,8,10[

	

46

	

 The pseudo-code of the proposed algorithm is the following:

TitleList = Import_Titels_List()

CategoriesList = Import_Categories_List()

StemList = Import_Words_List()

ErrorsCounter = 0

WordsCounter = 0

For each title in TitleList

 WordsIn Title = extractWordsFromTitles(title)

 WordsCounter = WordsCounter + NumberOfElement(WordsIn Title)

 TitleCategories(title) = emplylist()

 for each wordintitle in WordsInTitle

 for each stem in StemList

 StemIsFound = false

 if StemOf (wordintiltle) == stem

 TitleCategories(titles) = union(TitleCategories(title), CategoriesOfStem(stem))

 StemIsFound = true

 GoToNextWordIntitle()

 end

 end

 if StemIsFound == false

OutputWarning(“The word”wordintitle “in the title”title “has not a matching in the list of
stems”)

 ErrorsCounter = ErrorsCounter + 1

 end

 end

end

ErrorRate = ErrorCounter / WordsCounter

Output(“The error rate is” ErrorRate)

	

47

	

3.3. Complexity analysis

To analyze the complexity of the algorithm the following symbols are used:

n : number of titles to be analyzed

m : number of stems present in the database

t : number of categories per word (mean value)

p : number of words per title (mean value)

q : number of characters per word (mean value)

w : total number of categories

 The overall number of instructions is

 𝑓 𝑛,𝑚, 𝑡,𝑝, 𝑞 = 𝑛𝑝𝑞 +𝑚𝑝 + 𝑛 𝑝𝑚 𝑡 + 𝑡 + 𝑞 + 𝑝 + 𝑝𝑞 (16)

 That is in the expanded form

 𝑓 𝑛,𝑚, 𝑡,𝑝, 𝑞 = 𝑚𝑛𝑝𝑞 + 2𝑚𝑛𝑝𝑡 +𝑚𝑝 + 𝑛𝑝𝑞 + 𝑝𝑞 + 𝑝 (17)

 Analyzing the expression above we can note that the increasing the size of

inputs the dominants terms are 𝑚𝑛𝑝𝑞 and 2𝑚𝑛𝑝𝑡. Then, considering that the number

of categories per word (𝑡) is generally lower than the number of characters per word

(𝑞) the time-complexity of the algorithm is 𝑂(𝑚𝑛𝑝𝑞).

 Considering that the number of word per title (𝑝), the number of characters

	

48

	

(𝑞) and the number of categories per word (𝑡) does not increase by increasing the

input size (as they mainly depend on the language the words belong) they can be

treated as constant (the medium value is considered) and can be neglected in the

evaluation of the time - complexity of the algorithm.

 In the end, the time complexity of the algorithm result using the big-𝑂

notation.

 𝑂(𝑚𝑛) (18)

The space complexity of the algorithm is calculated considering the bytes of

memory needed for the execution of the algorithm. Therefore, the number of bytes is

defined by Equation 19, described in its extended form by Equation 20:

 𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 = 𝑛𝑝𝑞 +𝑚 𝑝 + 𝑞 + 𝑝𝑞 + 𝑤𝑞 (19)

 𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 = 𝑛𝑝𝑞 +𝑚𝑝 +𝑚𝑞 + 𝑝𝑞 + 𝑤𝑞 (20)

Considering that the number of categories (𝑤) is generally lower than the

number of titles to be analyzed (𝑛) and lower than the number of stems (𝑚), in the

asymptotic analysis the last term (𝑤𝑞) can be neglected. In these conditions, the space

required when increasing n and q can be approximated as:

 𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 = 𝑛𝑝𝑞 +𝑚𝑝 +𝑚𝑞 (21)

Considering that the number of words per title 𝑝 and the number of characters

per word 𝑞 do not increase increasing the input size (as mentioned in the previous

paragraph, they mainly depend on the language used), the space required can be

approximated to:

	

49

	

 𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 = 𝑛𝑝𝑞 +𝑚𝑝 +𝑚𝑞 = 𝑛𝑝𝑞 +𝑚(𝑝 + 𝑞) (22)

In the end, the space complexity of the algorithm result using the big-𝑂

notation

 𝑂(𝑛 +𝑚) (23)

3.4. Case studies

 The same experiment is conducted for full domain, and sub-domains of the

library collections which are shown in Figure 3.6.

Figure 3.6: Books domain and sub-domains

 After finishing with the books domain, the algorithm is applied to another

domain such as animal domain (Figure 3.7).

	

50

	

Figure 3.7: Representing animal domain and sub-domains

In order to assess the performance of the proposed algorithm, a comparison

with Naïve Bayes and K-Nearest Neighborhood is performed.

3.4.1. Case study one (Wiley online library)

The data set of the first case study is represented by the Willey online library

[70]. It has collection of books (examples) described by different attributes. These

books were collected from different fields and disciplines. The characteristics of this

database are the following:

• Dataset name: Wiley online library [57]

• Number of attributes: 5888

• Number of examples: 8842

• Number of classes: 64

	

51

	

• Number of hierarchical levels: 3

The data set already contains nominal attributes, many values were missing.

Therefore, pre-processing was necessary. According to the workflow of the proposed

algorithm, before training and testing, a data cleaning step and nominal to numerical

conversion steps are performed.

In the data cleaning step, rare classes or classes that may have a representation

of less than 1% of the data set will be ignored as 1% is really a small number of

examples. In case the data set is a large one, 1% might be taken into consideration in

other data sets. Some examples of books titles that might be ignored due to the low

class representation are: “It Happened One Night”, “Top Hat”, “Hairspray”, “The Act

of Remembering”, and “Women at the Top”.

In the nominal to numerical conversion, numbers are manually assign to each

class as those classes are already induced and defined to their corresponding meaning.

Also, the transformation of the extracted features into numerical features is useful for

machine learning since its easy to handle when coding. For example if we have the

word “science = 1” in the feature set and we got a book titled with “computer science

algorithms”, the word “computer” will be assigned to 2, and the word “algorithms”

will be assigned to 3 as we already have “science” assigned to 1. So, the example

representation will be: “2,1,3.”

The data set has thousands of examples. To insure precise performance

evaluation, a 5-fold cross validation was used. The training examples are described

by thousands of attributes, thus it becomes easy to classify discriminant classes, but

that means that a large number of examples is required in this case.

	

52

	

This data is cleaned and all un-necessary words and stop words are removed.

The result of this phase is shown in table 3.2.

Table 3.2: Sample of cleaned books titles

Mass Spectrometry

Ray Powder Diffractometry

Ray Fluorescence Spectrometry

Reflection ATR Spectroscopy

HPLC

Electrospray MALDI Mass Spectrometry Biological

Forensic Chemistry

Chiroptical Spectroscopy Simulations

Chiroptical Spectroscopy Stereochemical Biomolecules

 Chemistry

Atomic Microscopy

Condensed Molecular Spectroscopy Photophysics

Thus, using stemming, every word is associated with its family. Consequently,

words like computer, computing, computers, and compute will have only one stem

number (Table 3.3).

	

53

	

Table 3.3: Sample of the words and their associated stem numbers.

Word Stem number Word Stem number

mass 1 Biological 14

Spectrometry 2 Chemistry 15

ray 3 Chiroptical 16

powder 4 Simulations 17

Diffractometry 5 Stereochemical 18

Fluorescence 6 Biomolecules 19

Reflection 7 Atomic 20

ATR 8 Microscopy 21

Spectroscopy 9 Condensed 22

HPLC 10 Molecular 23

Electrospray 11 Photophysics 24

Forensic 12 ADME 25

 MALDI 13 Drug 26

We select 𝑥!, 𝑥!… . 𝑥! ∈ 𝑋, and 𝑋 is a set of examples that consists of 𝑛

examples for training. In the training stage, the features are manually assign with each

class. This is called a class feature vector. Once this stage is achieved, the classifier is

trained and becomes ready for testing.

For this case study, the scope was to test if the classifier can be trained and

what would be the error rate. The dataset considered is represented by the entire

	

54

	

book domain [70]. The entire data set including all major classes and sub-classes

was used. The main classes are: Applied Science, Engineering Science, Health and

Social Sciences.

The data set was divided into training and testing examples each training set

having 200 examples and each testing 200 examples. For the training set, the

examples are manually classified and the class label is updated with every example.

Figure 3.8 shows the feature extraction workflow.

	

55

	

Figure 3.8: Feature extraction workflow

3.4.2. Case study two (Engineering domain)

 The structure of the engineering domain is presented in Table 3.4.

Start Read an
example

New
feature

No

Yes

Give the example
a new feature
number value

Manually find
the class(es)

Class is
found

No
Ignore the
example

Yes

Add the feature
number to the

class

End

	

56

	

Table 3.4: Structure of the Engineering domain

Engineering

science
Engineering

Chemical Engineering

Civil & Construction Engineering

Communication Technology & Networks

Computer Science & Information Technology

Electrical & Electronics Engineering

Industrial Engineering

Mechanical Engineering

Mobile & Wireless Communications

Very similar experiment setup will be used as the one used in case study one, but the

data is different. In this case, we will only apply the engineering domain. The

purpose is to observe if there is any change in the result compared with case one.

3.4.3 Case study three (Social Sciences and Humanities domain)

In this case, the same data set as in the case study two was used [70]. However,

only the social sciences and humanities books collection domain was studied. The

structure of the database is presented in Table 3.5.

	

57

	

Table 3.5: Structure of the Social Sciences and Humanities domain

 Social

Sciences

Social Sciences

& Humanities

Ancient History & Classical Studies

Anthropology & Archaeology

Architecture & Planning

Business, Economics, Finance, Accounting

History

Language & Linguistics

Literature

Philosophy

Public Administration & Management

Religion & Theology

Sociology, Media, Communications, & Cultural

Studies

3.4.4 Case study four (Health science domain)

The Health Science domain has a number of 1300 examples from the same

data set that we are using [70]. The structure of this domain is presented in Table 3.6.

In this experiment, the scope was to explore what happens (in terms of

percentages of obtaining new features in every news groups) if we introduce sequence

of examples in groups of 100-200 examples for each group.

	

58

	

Table 3.6: Structure of the Health Science domain

Health Health Sciences

Allergy & Respiratory Medicine

Anatomy & Physiology

Cardiology & Cardiovascular Medicine

Clinical Psychology

Dentistry

Dermatology

Endocrinology & Diabetes

Gastroenterology & Hepatology

Hematology

Neurology

Neuroscience

Nursing

Obstetrics & Gynecology

Oncology & Radiotherapy

Pharmacology

Psychiatry

Psychology

Public Health/General

Surgery

Veterinary Medicine

	

59

	

3.4.5 Case study five (Physical Science domain)

This domain has 1200 examples. The structure of the Applied Science area

(including the Physical Sciences domain) is presented in Table 3.7. Similarly to the

case study, in this experiment, the scope was to explore that happens (in terms of

percentages of obtaining new features in every news groups) if we introduce sequence

of examples in groups of 100-200 examples for each group. Distinctively from case

study four, different domains were used. Therefore, the experiment will show (when

the domain is changed), if there will be the same percentage of getting new features

with every new group or no.

Table 3.7: Structure of the Applied Science area

Applied

science

Chemistry

Analytical Chemistry

Biochemistry

Environmental Chemistry

General & Physical Chemistry

Industrial Chemistry

Inorganic Chemistry

Organic Chemistry & Catalysis

Pharmaceutical & Medicinal Chemistry

Physical

Sciences

Energy

Food Science & Technology

Materials Science

	

60

	

Mathematics

Nanotechnology

Physics

Polymer Science & Technology

Statistics

3.4.6 Case study six (Analytical Chemistry domain)

The Analytical Chemistry domain has a number of 250 examples. Similar to

the previous two case studies (four and five), in this experiment, was explored the

situation in which sequence of examples in groups of 50-100 examples for each group

are introduced.

3.4.7 Case study seven (Routers-21578)

In this case the Routers-21578 data set [71] is used. It is represented by a

collection of documents (news articles), and the documents are classified into classes.

In this experiment, the scope was to use the whole text in the document, and not only

the title of each document. Although this approach (due to the dimensionality) may

require a longer computational time, it will show if the number of features to number

of examples would have a direct impact on the error rate.

3.4.8 Case study eight (20 newsgroup)

In this experiment, the “20 newsgroup” dataset was employed. It has about

19,000 documents, the full document text, not only the titles being used for

classification. Section 4.1.10 discuss the result of this experiment in details. Very

	

61

	

similar to the previous experiment "case study seven," in this experiment we want to

use the whole text in the document, and not only the titles of each documents, the

difference being that the algorithm is run on a different data set.

3.4.9 Case study nine

In this experiment, we are looking at the error rate in general. The scope was

to check if all class hierarchy has the same error rate or different error rate. In

addition, the distribution of the error rate over class hierarchy was shown. In other

words, it was tested if the error rate in the parents classes are similar or different than

the error rate in the children or grandchildren classes. Therefore, two cases were

considered: i) testing the error rate at a specific error rate during the training-testing

phase; and ii) taking the readings for the whole experiment from start to finish.

3.5 Existing algorithms

In order to assess the performance of the proposed algorithm, a series of

existing algorithms (Naïve Bayes and K-NN) were implemented and compared in

terms of performance and efficiency.

 3.5.1 Naïve Bayes algorithm

This method is based on the Bayes theorem and is a simple probabilistic

classifier. It is suited for high dimensionality inputs, having good performance. If it is

used with text classification, we need to calculate the error rate on the same data set

and compare it with our suggested algorithm.

	

62

	

3.5.2 K-NN algorithm

The very popular K-NN is compared in this part with our algorithm.

	

63 	

	

Results

In this chapter, the results of the simulations performed with the proposed

algorithm and the algorithms chosen for comparison are presented and discussed.

Several experiments were conducted on real world data sets from different fields

including library collections [70], Reuters- 21578 [71], and 20 Newsgroup [72] data

sets. The final goal was to correctly classify a library collection into classes where the

examples (books) are classified into classes and the classes are hierarchically ordered.

4.1 The proposed algorithm

4.1.1 Feature extraction

If a new word is received and the word is not found in any class vector, then

this is considered as an error. The follow pseudo code calculates the error rate and do

the training and testing steps.

Data = importdata('Data.xlsx'); // n*p*q + m*(p+[q])

errcnt = 0; //1

wrdscnt = 0; //1

for i=1:length(Data.Titles)

WordsInTitle=regexp(Data.Titles{i}, ' ', 'split'); //p*q
WordsInTitle=setdiff(WordsInTitle,{''}); 

wrdscnt = wrdscnt + length(WordsInTitle);

TitleCategories{i}=[]; //0

for j=1:length(WordsInTitle)

for k=1:length(Data.Words)

	

64 	

	

found=0;
match=strncmpi(WordsInTitle{j},Data.Words{k},length(Data.Words
{k}));

if match==1

TitleCategories{i}=union(TitleCategories{i},Data.Words(

k,2:end)); //w*q
TitleCategories{i}=setdiff(TitleCategories{i},{''}); 

found=1; 

break;

end

end

if found==0 

warning(['The word ',WordsInTitle{j},' in the title ',num2str(i),' has not a

 matching in the list of stems']) //1

errcnt = errcnt +1; //1

end

end

end

errrate = errcnt / wrdscnt; // 1

disp(['The error rate is ', num2str(errrate*100) ,' %']);

4.1.2 5-fold cross validation

Along with this approach, the 5-fold cross validation procedure was also

tested. Let’s consider a scenario in which 250 examples are classified in order to

estimate the error rate. This classification is performed by taking 50 examples at a

time. The first iteration contained a number of 87 features in the feature set. In the

second iteration, 65 new features were obtained. Having new features that do not exist

in the features set will result in examples miss-classification, and this occurs during

	

65 	

	

every iteration. Therefore, the new features were added manually to the feature set, so

these new features will be assigned automatically in the feature set in the following

classification iteration. By this, it can be noticed that the error rate is dropping with

each iteration (Figure 4.1).

Figure 4.1: 5 fold – cross validation

4.1.3 Case study one (Wiley online library)

In order to compute the error rate for this dataset, the macro-micro averaging

were used. When multiple class labels are to be retrieved, averaging the evaluation

measures can give a view on the general results. For example, consider a binary

evaluation measure B(TP,TN,FP,FN) that is calculated based on the number of true

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), and

2 labels 𝑐! and 𝑐!. In this case, the metrics are the ones presented Table 4.1.

	

66 	

	

Table 4.1: Macro-Micro averaging measures

Label TP FP FN Precision Recall

𝒄𝟏 20 20 20 0.5 0.5

𝒄𝟐 80 20 20 0.8 0.8

Total 100 40 40

Macro-averaged = 0.65

Micro-averaged = 0.71

Figure 4.2 shows the result of the experiment with a very noisy training, until

1000 examples are reached. At this point, the error rate starts to drop below 80%. The

learning curve shows an error rate of 40% when almost 4000 examples are used. We

expect that the curve will keep improving and the error rate keeps dropping as more

examples are added. This experiment was conducted on the whole books domain. The

number of attributes used in this experiment was 8555.

Figure 4.2 shows the result of applying the proposed algorithm, where every

class is labeled with the features that best describe the class. These all the examples

were classified to all classes that may have their features as shown in Figure 3.5

	

67 	

	

Figure 4.2: Books full domain error rate.

This algorithm works as follow:

• Read a data set.

• Perform data pre-processing phase.

• Extract the features, which are the attributes. If the feature is exist in any class,

then the word is classified in to that class, else, if it does not have a class, then

it is considered as an error and we classify it manually.

4.1.4 Case study two (Engineering domain)

With this sub-domain, the error rate drop below 20% with only 400 examples.

This can be explained by the fact that the number of attributes associated with this

domain is very small and equals to 1831 for the engineering domain. The error rate

	

68 	

	

was calculated using the Macro-Micro averaging metric. Figure 4.3 shows the result

of this experiment.

Figure 4.3: Engineering domain error rate

4.1.5 Case study three (Social sciences and humanities domain)

Figure 4.4 shows the output of this case study. As observed, the error descends

rapidly due to the fewer number of features. In this experiment, we also used the

Macro-Micro averaging metric to calculate the error rate.

	

69 	

	

Figure 4.4: Social sciences and Humanities error rate.

4.1.6 Case study four (Health domain)

Considering health sciences domain, which have a number of 1300 examples

and taking 100 examples on each iteration, the result shows an obvious decrease in

the number of features whenever new set of examples are added (Figure 4.5).

The Figure 4.5 shows that, the first 100 examples has 154 new features then

the second 100, shows 152 new features, and the third 100, shows another new

features of 125, and so on.

	

70 	

	

Figure 4.5: First level classification

4.1.7 Case study five (Physical sciences domain)

Considering physical sciences domain which has a number of 1200 examples

and taking 100 examples on each iteration, the result shows an obvious decrease in

the number of features (Figure 4.6.)

The Figure 4.6 shows that, the first 100 examples have 87 new features then

the second 100 have 65 new features, and the third 100 have 45 new features, and so

on.

	

71 	

	

Figure 4.8: Second level classification

4.1.8 Case study six (Analytical chemistry domain)

Considering analytical chemistry domain which has a number of 250

examples and taking 50 examples on each iteration, the results show an obvious

decrease in the number of features (Figure 4.7)

Figure 4.7: Third level classification

	

72 	

	

4.1.9 Case study seven (Routers- 21578)

The results of the previous case studies showed that a book collection could be

trained and the error rate can be reduced if more examples are added. The error rate in

this case was calculated using the hamming loss [61]. Figure 4.8 shows the result of

the experiment. As it can be observed, the error rate is very low starting at ≈ 1.5% to

less than 0.5%.

Figure 4.8: Routers-21578 data set error rate

4.1.10 Case study eight (20 newsgroup)

In this experiment, we used another popular algorithm in documents

classification called Term Frequency Inverse Document Frequency (TF-IDF) [8] and

the data set “20 newsgroup” was used. As explained in section 3.4.8 the data set has

about 19,000 documents. It is expressed in terms of the document-term matrix. Rows

are represented by the document examples, and columns represent words. A matrix

entry (i,j) represents the frequency of occurrence of a word j in a document i. Word

	

73 	

	

frequencies for about 60,000 words are specified for each document. The item (1,1)

means document #1, word #1, and the #4 means word#1 has frequency = 4 in

document #1 and so on.

In an attempt to reduce the dimensionality of dataset, the following steps were

preformed:

• Removing features that do not help in discriminating between class i.e., words

like ’a’, ‘the’ that appear in all documents.

• Using Principle Component Analysis PCA [39] for dimensionality reduction

Words with high Inverse Document Frequency (IDF) counts are removed, where

IDF represents the ratio of the number of documents in which a particular word

appears, to the total number of documents. A high value indicates that the word is

present in most of the documents across classes, and hence does not help much in

discriminating between the classes. But it was noticed that we were left with a large

number of words even after removing the ones with counts above a certain threshold.

Since discarding information can affect classifier performance later and setting too

low threshold is not a good thing, new alternatives were searched.

4.1.11 Case study nine (The distribution of the error rate)

Figure 4.9 shows the error distributions over the class hierarchy. It shows that

as we go down in the hierarchy the error increases. It was taken at error rate = 20 and

as it can be observed, the error rate is 20% * 9.1 = 1.82% in the parent level, 20% *

27.3% = 5.46% in the child level, and 20% * 63.6% = 12.72% in the grandchild level

or level 3.

	

74 	

	

Further investigations were conducted in order to determine if there is a

constant relation between the class hierarchies when the error rate is 20%. A discrete

distribution of the error over the hierarchy was determined. However, we want to find

a continuous function of the distribution of the error over the hierarchy at any point

where error rate start at maximum to minim.

Figure 4.9: Error in class hierarchy in the Engineering domain.

Figure 4.10, shows the distribution of the error rate over class hierarchy. The

results show that, the parent classes most of the time has less error rate and the grand

children class has more error rate. However, this is not true for all values as rarely the

parent class has more errors.

12.72%	
 	
 	
 	
 	
 	
 	

	
 	
 	
 5.46%	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 1.82%	
 	
 	
 	
 	
 	
 	
 	

	

75 	

	

Figure 4.10: Error distributions over hierarchy

4.2. Existing algorithm (Method A: Naïve Bayes algorithm)

4.2.1 Training stage

The first task in the training stage is to separate 10% data for testing purposes

from each class. 10% data is separated for each class out of total data for that class.

For example, if 100 samples are available for class 1, 10 samples were taken out for

testing. This 10% amount is standard in literature and in normal circumstances 10-

15% data is taken out for testing. If 50% of data is taken out, too less remains for the

training stage and the classifier may not generalize well. After segregating, there were

9012 items in training data and 969 items in testing data, including roughly 10% from

each class.

	

76 	

	

On the second stage, the methodology of data cleaning presented in section

3.1is applied, all the unnecessary words being removed from the titles of the books.

These include articles such as, (a, and), prepositions (of, for etc.) and other common

meaningless words like volume, edition, e-book etc.

On the third stage, all the remaining words were extracted from the books’

titles and each word was assigned a unique number and another identifier to show

which class it belongs to. Actually wordID is unnecessary and we may ignore it. For

each word, we have a list of classes it can belong to, e.g. chemical may belong to

class 1, 3 and 5 so its class ID will be (1,3,5). So the format was like:

word class ID wordID

For instance, the word Horticulture, the word ID may be 5 and if it belongs to

class 10, its class ID is 10. Then all words are converted to uppercase so that while

comparing the words later we do not have to deal with case-sensitivity issue.

Finally, all the words are sorted alphabetically so that when comparing in the

testing stage, we do not have to compare with all words. Thus, there is no need to

compute distances with all the words but only with those which start with the

specified letter. For instance, if the word is Horticulture, then we only need to

compare it with the words starting with the letter H.

 Once all is done, all the words, sorted alphabetically and in the format mentioned

above, are stored in a data file.

4.2.2 Testing stage

In the testing stage, all the titles, along with the class to which it belongs to are

passed through the testing function. For instance:

	

77 	

	

Class title

Agriculture Horticultural Reviews, Volume 1

In the testing stage, the book title goes through the same steps as the training

data start the data cleaning process again. Useless words are removed and the useful

words are extracted and separated, then converted into uppercase.

After pre-processing, the final shape of the title will be:

(HORTICULTURAL REVIEWS and VOLUME and 1) all of those words being

removed as they are very generic words and cannot be associated with a particular

class. The only word kept is HORTICULTURAL

Next, the training data is loaded and as discussed before, only the words

starting with the same letter as the testing word are selected for comparison. For

instance, when we want to see which class the word FUNGI belong to, we will

compare only with the words starting with the letter F. We do the same with the

example above HORTICULTURAL which starts with H, we will compare it only

with the words starting with the letter H. We call this a stemming process, where we

associate each word with its own stem words only.

The testing word is compared with the above selected words and its distance is

computed from them. Two types of matching techniques are used; one is the

Lavenstein Distance [77], the number of edits required to convert one string to

another. For instance, if HORTICULTURE and HORTICULTURAL are compared,

then Lavenstein Distance will be 2, since 2 edits are required to convert the first string

into the second one.

	

78 	

	

The second one is the number of mismatched characters with respect to the

shorter of the two strings e.g. if HORTICULTURE and HORTICULTURAL are

compared, the shorter string is HORTICULTURE and with respect to its length, the

number of mismatched characters are only 1 (A instead of E), so the distance between

the two strings is 1.

Even though both techniques use slightly different and give different results,

when we take the minimum in the following stage, the final result is invariably the

same.

Once distances from all the words are computed, we select only those with the

minimum distance. If multiple words give the same minimum distance (as they do

because of repetition), then all of them are selected and the IDs of the classes they

belong to, are stored in a cell array. For instance, if we give the label 'Horticultural

Reviews, Volume 1' we know that after preprocessing, we are left with only

HORTICULTURAL REVIEWS.

Now, when classifier compares HORTICULTURAL with the training words

and then computes the distance from them and chooses those words with minimum

distances. Since in this case, HORTICULTURAL is present as it is in our data set, the

minimum distance will be 0. Now HORTICULTURAL has 35 occurrences in class 1

– (AGRICULTURE) and 1 in class 55 – (Plant Science), it would return an array of

36 elements, with 35 elements as 1 and 1 element as 55 i.e. array = [1 1 1 .. 1 1 55]

The process is repeated for all the words in the label and in the end resulting a

cell array of class IDs to which these words may belong. So same process will be

	

79 	

	

repeated for reviews and the class IDs it returns will be appended in the previous

array.

In the final step, the most frequent class ID are picked as the class to which the

label should belong. If multiple class IDs have the same frequency, then the one

which comes first is picked. For instance, in the above case, decision is easy. Since

there are 35 instances of class ID 1 and only 1 of class ID 55, mode function will

return 1 and we classify the label to class 1 – AGRICULTURE. But suppose if there

are 6 instances of class 1 and 15 instances of class 55 and 15 instances of class 20;

now there are 2 class IDs with most frequent entries – 20 and 55, mode will return the

class ID which is smaller so in that case class 20 will be the answer and label will be

classified to class 20.

4.2.3 Results

4.2.3.1 Single label classification

The testing is done for all the classes and the error rate for each class is

compared. The error rate for most of the classes is quite high, the reason being that

out of the 49000 total words in the 9012 training titles, only about 8500 are unique

and the rest are just repetitions. This indicates a huge overlap of data among different

classes and as a consequence, the classifier gets confused while testing and therefore

misclassify the data.

The last step, in which we pick the ID of the most frequent class, normally has

number of IDs with the same frequency, and just picking the first one also introduces

errors. The error rate for all the different classes is reported in Table 4.2.

	

80 	

	

Table 4.2: The error rate for all the different classes using single label classification

Class name

Total

number of

examples

Correct Incorrect
Error

rate

'Agriculture' 10 4 6 60

'Allergy & Respiratory Medicine' 2 0 2 100

'Analytical Chemistry' 25 6 19 76

'Anatomy & Physiology' 1 0 1 100

'Ancient History & Classical Studies' 10 0 10 100

'Anthropology & Archaeology' 10 1 9 90

'Aquaculture & Fisheries' 10 4 6 60

'Architecture & Planning' 3 1 2 66

'Biochemistry' 12 1 11 91

'Business, Economics, Finance,

Accounting' 28 12 16 57

'Cardiology & Cardiovascular Medicine' 14 6 8 57

'Cell & Molecular Biology' 21 4 17 80

'Chemical Engineering ' 24 10 14 58

'Civil & Construction Engineering' 28 11 17 60

'Clinical Microbiology' 1 0 1 100

'Clinical Psychology' 20 7 13 65

'Communication Technology &

Networks' 25 8 17 68

	

81 	

	

'Computer Science & Information

Technology' 27 4 23 85

'Dentistry' 1 0 1 100

'Dermatology' 2 0 2 100

'Earth & Environmental Sciences' 17 2 15 88

'Ecology' 10 3 7 70

'Electrical & Electronics Engineering' 76 55 21 27

'Endocrinology & Diabetes' 5 2 3 60

'Energy' 13 1 12 92

'Environmental Chemistry' 12 0 12 100

'Food Science & Technology' 23 13 10 43

'Gastroenterology & Hepatology' 6 1 5 83

'General & Physical Chemistry' 20 0 20 100

'Genetics & Evolution' 6 0 6 100

'Geography' 12 3 9 75

'Hematology' 5 0 5 100

'History' 12 2 10 83

'Industrial Chemistry' 23 1 22 95

'Industrial Engineering' 13 0 13 100

'Inorganic Chemistry' 6 0 6 100

'Language & Linguistics' 8 0 8 100

'Literature' 21 15 6 28

	

82 	

	

'Materials Science' 39 24 15 38

'Mathematics' 16 2 14 87

'Mechanical Engineering' 22 2 20 90

'Microbiology, Virology & Immunology' 7 0 7 100

'Mobile & Wireless Communications' 29 18 11 37

'Nanotechnology' 10 1 9 90

'Neurology' 3 0 3 100

'Neuroscience' 2 0 2 100

'Nursing' 12 10 2 16

'Obstetrics & Gynecology' 4 1 3 75

'Oncology & Radiotherapy' 2 0 2 100

'Organic Chemistry & Catalysis' 35 26 9 25

'Pharmaceutical & Medicinal Chemistry' 20 6 14 70

'Pharmacology' 4 0 4 100

'Philosophy' 26 9 17 65

'Physics' 32 10 22 68

'Plant Science' 9 8 1 11

'Polymer Science & Technology' 12 5 7 58

'Psychiatry' 10 3 7 70

'Psychology' 26 10 16 61

'Public Administration & Management' 18 4 14 77

	

83 	

	

'Public Health/General' 1 0 1 100

'Religion & Theology' 11 2 9 81

'Sociology, Media, Communications, &

Cultural Studies' 19 2 17 89

'Statistics' 26 17 9 34

'Surgery' 1 0 1 100

'Veterinary Medicine' 11 7 4 36

The average error rate for all the classes can be computed by

 Avg. Error Rate = ∑ (Error Rate of class) x (No. Words in the class)

 Total No. of Words

where ∑ indicates the sum over all the classes. This is just the concept of weighted

average. e.g. if we have 3 classes; class 1 has an error rate of 60%, class 2 has an error

rate of 40% and class 3 has an error rate of 50%.

Then using the simple average formula, the error rate obtained is 50%.

((60+40+50)/3 = 50). But now suppose there are total of 10 words; 5 belong to class

1, 3 to class 2 and 2 to class 3. Since more words belong to class, logically its error

rate should have more contribution in the overall error rate. So we do weighted

average, weight for class 1 is 5/10 = 0.5 (no. of words in the class / total words).

Similarly weight for class 2 is 3/10 = 0.3 and weight for class 3 is 2/10 = 0.2. Now we

multiply with respective error rates and sum them up; so the error rate becomes (0.5 x

60) + (0.3 x 40) + (0.2 x 50) = 30 + 12 +10 = 52%. This error rate is more indicative

of the overall behavior of all the classes as it gives more weight to the classes with

	

84 	

	

more amount of data. Using the above formula, the Avg. Error Rate for all classes

comes out to be 64%.

 As evident from Table 4.2, the error rate is low only for those classes which

have a sufficient amount of data. Classes with high amount of data are more likely to

be classified correctly just because the probability of occurrence is high. Probability

statistics has low error rate because it contains more unique words and the

overlapping of data with other classes is low.

4.2.3.2 Multi-label classification

The error rate can be reduced by number of different techniques. One simple

way is to get all the different class IDs in the last step of testing stage, each of which

have the same probability to be assigned to the given title – this is the Multi-Label

Classification and in this case each title can belong to multiple classes. Given that the

actual class is among the final set, this step can eliminate all the non-probable classes

and another classifier can be used in the next step to choose the final class or a human

can do that provided the number of such instances are small.

Alternatively, unique words can be extracted and for each word, the class to

which it belongs most frequently can be identified (the bag-of-words approach). Then,

instead of assigning the class IDs of all the classes to which the word may belong, we

assign only those class (or classes) IDs to which it belongs the most. But this

technique is biased towards the class having more training samples, and the error rates

for the classes which have the lesser data may increase more. The overall error rate

will surely decrease as the classifier is now more biased towards the classes which are

	

85 	

	

more frequent and more likely to come. The results of this technique are slightly

better (Table 4.3).

Table 4.3: The error rate for all the different classes using multi-label classification

Class name

Total

number of

examples Correct Incorrect

Error

rate

'Agriculture' 10 4 6 60

'Allergy & Respiratory Medicine' 2 2 0 0

'Analytical Chemistry' 25 14 11 44

'Anatomy & Physiology' 1 0 1 100

'Ancient History & Classical Studies' 10 7 3 30

'Anthropology & Archaeology' 10 5 5 50

'Aquaculture & Fisheries' 10 7 3 30

'Architecture & Planning' 3 1 2 66

'Biochemistry' 12 1 11 91

'Business, Economics, Finance, Accounting' 28 22 6 21

'Cardiology & Cardiovascular Medicine' 14 11 3 21

'Cell & Molecular Biology' 21 7 14 66

'Chemical Engineering ' 24 12 12 50

'Civil & Construction Engineering' 28 14 14 50

'Clinical Microbiology' 1 0 1 100

'Clinical Psychology' 20 14 6 30

	

86 	

	

'Communication Technology & Networks' 25 11 14 56

'Computer Science & Information

Technology' 27 10 17 62

'Dentistry' 1 0 1 100

'Dermatology' 2 0 2 100

'Earth & Environmental Sciences' 17 4 13 76

'Ecology' 10 5 5 50

'Electrical & Electronics Engineering' 76 54 22 28

'Endocrinology & Diabetes' 5 1 4 80

'Energy' 13 1 12 92

'Environmental Chemistry' 12 1 11 91

'Food Science & Technology' 23 13 10 43

'Gastroenterology & Hepatology' 6 2 4 66

'General & Physical Chemistry' 20 2 18 90

'Genetics & Evolution' 6 0 6 100

'Geography' 12 4 8 66

'Hematology' 5 0 5 100

'History' 12 5 7 58

'Industrial Chemistry' 23 2 21 91

'Industrial Engineering' 13 2 11 84

'Inorganic Chemistry' 6 1 5 83

'Language & Linguistics' 8 1 7 87

	

87 	

	

'Literature' 21 14 7 33

'Materials Science' 39 25 14 35

'Mathematics' 16 5 11 68

'Mechanical Engineering' 22 4 18 81

'Microbiology, Virology & Immunology' 7 0 7 100

'Mobile & Wireless Communications' 29 17 12 41

'Nanotechnology' 10 0 10 100

'Neurology' 3 1 2 66

'Neuroscience' 2 0 2 100

'Nursing' 12 5 7 58

'Obstetrics & Gynecology' 4 0 4 100

'Oncology & Radiotherapy' 2 0 2 100

'Organic Chemistry & Catalysis' 35 23 12 34

'Pharmaceutical & Medicinal Chemistry' 20 8 12 60

'Pharmacology' 4 1 3 75

'Philosophy' 26 9 17 65

'Physics' 32 8 24 75

'Plant Science' 9 5 4 44

'Polymer Science & Technology' 12 2 10 83

'Psychiatry' 10 2 8 80

'Psychology' 26 8 18 69

	

88 	

	

'Public Administration & Management' 18 8 10 55

'Public Health/General' 1 0 1 100

'Religion & Theology' 11 5 6 54

'Sociology, Media, Communications, &

Cultural Studies' 19 2 17 89

'Statistics' 26 14 12 46

'Surgery' 1 0 1 100

'Veterinary Medicine' 11 8 3 27

The Avg. Error Rate for this technique comes out to be 57% which is an

improvement over the previous technique.

4.3 Existing algorithm (Method B: KNN algorithm)

Suppose the classifier was asked to classify some sample X, and after

computation classifier finds that it can belong to any one of the class 1, class 2 and

class 3. In this case, we need a rule to break a tie and the one we used in previous

section was to pick the lowest class ID. Therefore, the sample will be classified to

class 1 even though it may belong to class 2 or class 3. Suppose that sample originally

belonged to class 2; then the classification will be wrong and will account as an error.

But if we don’t use any tie-breaker and outputs all the equally probable classes, i.e.

class 1, class 2 and class 3, then there will be no error as sample does belong to one of

these classes. This is the whole idea of multi-label classification or multi-output

classification, in which input X is not mapped to a single scalar class y, but rather a

vector of classes Y

	

89 	

	

 The algorithm was modified to accommodate the multi-label classification and

an error occurs only if the actual class y was not among the vector of classes Y given

by the classifier. The error rate is reduced in this case compared to the case of single-

output classification. The results are shown in Table 4.4.

Table 4.4: Results obtained with KNN algorithm

Class name

Total

number of

examples

Correct Incorrect
Error

rate

'Agriculture' 10 4 6 60

'Allergy & Respiratory Medicine' 2 2 0 0

'Analytical Chemistry' 25 14 11 44

'Anatomy & Physiology' 1 0 1 100

'Ancient History & Classical Studies' 10 7 3 30

'Anthropology & Archaeology' 10 5 5 50

'Aquaculture & Fisheries' 10 7 3 30

'Architecture & Planning' 3 1 2 66

'Biochemistry' 12 2 10 83

'Business, Economics, Finance, Accounting' 28 22 6 21

'Cardiology & Cardiovascular Medicine' 14 11 3 21

'Cell & Molecular Biology' 21 8 13 61

'Chemical Engineering ' 24 14 10 41

'Civil & Construction Engineering' 28 20 8 28

	

90 	

	

'Clinical Microbiology' 1 0 1 100

'Clinical Psychology' 20 14 6 30

'Communication Technology & Networks' 25 13 12 48

'Computer Science & Information

Technology'
27 12 15 55

'Dentistry' 1 0 1 100

'Dermatology' 2 1 1 50

'Earth & Environmental Sciences' 17 6 11 64

'Ecology' 10 6 4 40

'Electrical & Electronics Engineering' 76 61 15 19

'Endocrinology & Diabetes' 5 3 2 40

'Energy' 13 7 6 46

'Environmental Chemistry' 12 2 10 83

'Food Science & Technology' 23 15 8 34

'Gastroenterology & Hepatology' 6 4 2 33

'General & Physical Chemistry' 20 8 12 60

'Genetics & Evolution' 6 2 4 66

'Geography' 12 9 3 25

'Hematology' 5 3 2 40

'History' 12 6 6 50

'Industrial Chemistry' 23 4 19 82

	

91 	

	

'Industrial Engineering' 13 4 9 69

'Inorganic Chemistry' 6 2 4 66

'Language & Linguistics' 8 4 4 50

'Literature' 21 16 5 23

'Materials Science' 39 28 11 28

'Mathematics' 16 8 8 50

'Mechanical Engineering' 22 8 14 63

'Microbiology, Virology & Immunology' 7 2 5 71

'Mobile & Wireless Communications' 29 19 10 34

'Nanotechnology' 10 2 8 80

'Neurology' 3 2 1 33

'Neuroscience' 2 0 2 100

'Nursing' 12 11 1 8

'Obstetrics & Gynecology' 4 1 3 75

'Oncology & Radiotherapy' 2 1 1 50

'Organic Chemistry & Catalysis' 35 29 6 17

'Pharmaceutical & Medicinal Chemistry' 20 11 9 45

'Pharmacology' 4 2 2 50

'Philosophy' 26 20 6 23

'Physics' 32 15 17 53

'Plant Science' 9 8 1 11

	

92 	

	

'Polymer Science & Technology' 12 8 4 33

'Psychiatry' 10 5 5 50

'Psychology' 26 17 9 34

'Public Administration & Management' 18 10 8 44

'Public Health/General' 1 0 1 100

'Religion & Theology' 11 7 4 36

'Sociology, Media, Communications, &

Cultural Studies'
19 7 12 63

'Statistics' 26 20 6 23

'Surgery' 1 0 1 100

'Veterinary Medicine' 11 11 0 0

Green blocks indicate the classes with error rate of less than 50% and it is

visible that now such instances are lot more than in previous tables. The overall Avg.

Error Rate is 41% which is an improvement of nearly 16% from the previous method.

4.4 Classification of parent class

The classification of Parent Classes is much less error prone as there are few

parent classes and the margin for error is smaller. In this case, there are 6 Parent

classes corresponding to 65 Child classes. The original classifier (in multi-label case)

returns a set of child classes, which may or may not belong to the same parent class.

So we get the parent class for each of these child classes and then compare them one

by one to the original parent class. An error occurs only if none of the parent classes

	

93 	

	

match the original parent class. The error rates for all 6 parent classes are shown in

Table 4.5.

Table 4.5: Errors obtained in case of parent classification

Class name

Total

number of

examples

Correct Incorrect Error rate

'Chemistry' 153 94 59 38

'Engineering' 244 212 32 13

'Health Sciences' 132 114 18 13

'Life, Earth & Environmental Sciences ' 103 65 38 36

'Physical Sciences' 171 125 46 26

'Social Sciences & Humanities' 166 147 19 11

The highlighted entries indicate the classes with error rate of less than 30%.

The overall weighted Average Error Rate is 21%.

	

94 	

	

Discussion

Large collections of a library of documents may include hundreds of

thousands of documents and more are added every week. In this case, there is a need

for finding out if a machine learning algorithms might be helpful. So, we can answer

this question by the following this simple idea: a small percentage of all examples are

enough for the induction of a high performance classifier. If this is the case, the use of

machine learning is helpful. However, if 50% of the collection is not enough, machine

learning is not an adequate approach as the resource consumed (human and

computational time) are two high and the advantages it brings are insignificant

compared with the drawbacks.

In order to test this idea, a new algorithm is developed and implemented.

When applying the proposed algorithm for the case study one, if a perfect training is

performed, then the error rate is very small. Also, the relation between the number of

iteration and the error rate was shown, if more samples are added, then error is

decreasing.

In the case study two, where a collection of about 9000 book titles is available,

when using 100% of the collection, an error rate of 40% ± 5% is obtained. The result

of the experiment is very pessimistic. However, if a closer look and careful attention

is paid to Figure 4.2, it can be observed that the curve trend is going slowly toward a

lower error rate. It can be assumed, that a collection of 50,000 book titles is available,

	

95 	

	

then the error rate will be 10% ± 2% from the number of training example (close to

20,000 book titles).

 This problem is due to: i) the large number of features and low number of

examples; and ii) the high frequency of each feature in relation to documents, which

makes the classifier confused about the examples. For example, for the case study

three, when analyzing the results from Figure 4.3, it can be observed that error rate

drops to less than 10% with number of examples less than 1000. This is due to the

small number of features, as all the examples belong to the engineering domain and

thus; the features are very limited and related only to this domain.

 Figure 4.6 shows the social sciences and humanities domain (case study four).

This experiment gives a result very similar to the result found in the engineering

domain (experiment three). Therefore, it can be concluded that if each domain is

classified separately, a lesser number of examples can be obtained than in the case of

classifying the entire collection. So, according to experiment 2, 3, and 4, we can see

that, if the domain is small enough such as the engineering domain or the social

sciences and humanities domain, then the error rate drops to 10% at much faster rate.

Figure 5.1 summarizes the finding for these case studies.

Figure 5.1 shows a disparity in the error rate between different domains in the

number of examples needed to take the error rate down to 10%. So, in case of the

whole domain 4000 examples are required, while the engineering or social sciences

and humanities domain require 550 examples and 650 examples respectively.

	

96 	

	

 Figure 5.1: Findings of experiments 2, 3, and 4.

The second research question presented in chapter 1 is, if a classifier was

induced at higher level, does this implies to a lower class classifier? Which means, if

an example was classified at higher level class, would this example be a parent and

grandparent to all its documents? In order to test this hypothesis different case studies

were tested.

For example, in the case study three, Figure 4.4 shows that when we

investigated the error at 20% we found that 9.1% of the error is in the parent level,

which means the error at parent level is 9.1 * 20% = 1.82%, then it is 5.46% at the

children level and 12.72% at the grand children level. This experiment shows that

there are more errors in the lower level than in the higher level of the class hierarchy.

Figure 4.5 shows that if the examples are correctly classified at the parent

level and it has x% error in the lower level, this means that there are x % misclassified

examples in the lower level. However, the error of the examples that where classified

in the upper level to the classes that are correctly classified in the lower level is very

	

97 	

	

low and it is found to be << x%. This concludes that, if we have 100 examples

correctly classified in the upper level, those examples will have x% misclassified

examples in the lower level. And if we have 100 examples, correctly classified in the

lower level they will have << x% misclassified examples in the upper level. Also, it

was shown that parents and grandparents classes might have miss-classified children

in the lower level more than misclassified grandparent.

Another data set used is Routers data set (case study eight.) This document

classification was done using Naïve Bayes technique and the error rate drops to less

than 1 % at a very early stage and with a number of examples = 100 documents the

error rate drops to a number close to 200 at 8000 examples. This behavior is due to

large size of information as we used to full text in this case, and we use the

documents’ contents and not only the documents’ titles. This concludes that if more

information is used in the document, the error rate will drop dramatically. This result

may address the first research question as follow: If we can use more information

about the document, will it give a much better result? In order to answer this question

a set of 3 more case studies (five, six and seven) were used for simulations.

The results of those experiments showed that when the training is started, the

number of features is high and the relation of number of examples to the number of

features is almost 1:1.5. However, more examples are added, the number of new

features drops to point where it gets to 1 to 0.5. This means we can have a much

better error rate if we add more examples. The number of new features is decreasing

in all levels, parent, grandparents and children at almost the same rate as presented in

Figures 4.7, 4.8, and 4.9. This means if we add more example we will have a great

improvement in the error rate at all levels.

	

98 	

	

In summary, a new algorithm using machine learning was proposed and

compared to two of the very popular methods Naïve Bayes and KNN methods. As

shown in Chapter 3, in order to perform the comparisons between algorithms, two

well-known and highly recognized evaluation metrics (macro-micro averaging and

hamming loss) were used.

Simulations showed that using only book titles to classify a large collection of

library contents is very time consuming and costly too. Alternatively, it was suggested

that either use the sub domain approach and classify each sub domain separately or

include as much information as possible such as; abstract of documents, an

introduction, or the whole document.

Another major finding is that a parent node can be a parent of all documents

with a small and acceptable error rate 𝑒!. However, a child node is a child if all

ancestors with a very small error rate 𝑒! where 𝑒! ≫ 𝑒!.

 The problems encountered when conducted the research presented in this

work is that more data sets must be used to verify the findings. Although, five

different data sets from different domains were used, the author still feels that more

experiments on different domains may be required, this aspect being a possible

weakness of the research. Another weakness is related to the fact that only one

machine learning method for each data set was used and the proposed algorithm was

compared only with KNN and Naïve Bayes.

Different results could have been obtained if different methods were used, but

the limited time allocated for this research made it impossible, as a big percent of it

was spent on formulating the problem and finding the suitable data set. Selecting

	

99 	

	

totally different data sets and approaching the problem from different perspective

gives novelty to this research. A set of aspects were difficult to handle as many

problems were encountered (such as having a data set that may need a huge memory

to solve which is turn ends up in to “out of memory” error).

The significance of this research is very clear as it addresses the first research

question clearly and informs that a library collection or a similar collection can be

classified automatically using machine learning algorithms.

	

100 	

	

Conclusion

This study is focused on the HMC with emphasis on several case studies to

draw the research observations. This is done by conducting various experiments using

a few popular machine learning algorithms: KNN and Naïve Bayes algorithms, along

with the proposed algorithm based on SVM. The research also aimed to identify the

child-parent relation, and parent-child relation. To this goal, a proprietary software

was built to test whether an example is classified into its corresponding child and

grandchild as well as if the grandchild belonged to its accurate parent and

grandparent. The significance of the research is the motivation for the use of machine

learning in digital libraries which were the primary resource that were used in the

study. We have also used 20 newsgroup and Routers data set to compare the

performance.

The performance analysis was done using Macro and Micro averaging and

hamming loss metrics. Based on the results, it was found that, it is very time

consuming and costly to use only book titles to classify a large collection of library

contents. Thus, it was suggest that either use the sub domain approach or classify each

sub domain separately, or include more information such as abstract of documents, an

introduction of the document. Another major finding is that a parent node can be a

parent of all documents with a small and acceptable error rate. In general, these

findings are very similar to the many recent published studies.

In future, we plan to generalize the proposed algorithm for the hierarchical

	

101 	

	

case where the interrelation of the class labels can be specified by a generalization

tree of a directed acyclic graph (DAG) as in Vateekul et al. [2] study.

	

102 	

	

References

1. E. Alpaydin, Introduction to machine learning: The MIT Press; second edition

(December 4, 2009).

2. P. Vateekul, M. Kubat, and K. Sarinnapakorn, "Hierarchical Multi-Label

Classification with SVMs: a Case Study in Gene Function Prediction." .

unpublished work.

3. V. Vapnik, The nature of statistical learning theory: Springer; 2nd edition

(December 1, 1999)

4. T. Joachims, Text categorization with support vector machines: Learning with

many relevant features: Springer, 1998.

5. L. Wang, Support Vector Machines: theory and applications, 177: Springer,

2005.

6. L. Baoli, L. Qin, and Y. Shiwen, "An adaptive k-nearest neighbor text

categorization strategy," ACM Transactions on Asian Language

Information Processing (TALIP), vol. 3, no. 4. pp.215-226, 2004.

7. N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers,"

Machine learning, vol. 29, no. 2-3. pp.131-163, 1997.

8. A. Clare and R. D. King, "Predicting gene function in Saccharomyces

cerevisiae," Bioinformatics, vol. 19, no. suppl 2. pp.ii42-ii49, 2003.

	

103 	

	

9. A. McCallum and K. Nigam, "A comparison of event models for naive bayes

text classification." AAAI-98 workshop on learning for text

categorization vol. 752, pp. 41-48. 1998. Citeseer.

10. J. T.-Y. Kwok, "Automated text categorization using support vector machine."

In Proceedings of the International Conference on Neural Information

Processing (ICONIP) . 1998. Citeseer.

11. C. Chow and C. Liu, "Approximating discrete probability distributions with

dependence trees," Information Theory, IEEE Transactions on, vol. 14,

no. 3. pp.462-467, 1968.

12. L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev, and S. Dzeroski,

“Predicting gene function using hierarchical multi-label decision tree

ensembles.” Bmc Bioinformatics, vol. 11, 2010.

13. L. S. Larkey and W. B. Croft, "Combining classifiers in text categorization."

Proceedings of the 19th annual international ACM SIGIR conference on

Research and development in information retrieval , pp. 289-297. 1996.

ACM.

14. D. Koller and M. Sahami, "Hierarchically classifying documents using very few

words," Proceedings of the 14th International Conference on Machine

Learning ML, Nashville, page 170--178. (1997).

15. D. D. Lewis and W. A. Gale, "A sequential algorithm for training text

classifiers." Proceedings of the 17th annual international ACM SIGIR

	

104 	

	

conference on Research and development in information retrieval , pp.

3-12. 1994. Springer-Verlag New York, Inc.

16. T. M. Mitchell, "Machine learning," Burr Ridge, IL: McGraw Hill, vol. 45,

1997.

17. W. T. Aung and K. H. M. S. Hla, "Random forest classifier for multi-category

classification of web pages." Services Computing Conference,

2009.APSCC 2009.IEEE Asia-Pacific , pp. 372-376. 2009. IEEE.

18. L. Wang, M. Q. Yang, and J. Y. Yang, "Prediction of DNA-binding residues

from protein sequence information using random forests," Bmc

Genomics, vol. 10, no. Suppl 1. pp.S1, 2009.

19. S. Ahmad, M. M. Gromiha, and A. Sarai, "Analysis and prediction of DNA-

binding proteins and their binding residues based on composition,

sequence and structural information," Bioinformatics, vol. 20, no. 4.

pp.477-486, 2004.

20. C. Yan, M. Terribilini, F. Wu et al., "Predicting DNA-binding sites of proteins

from amino acid sequence," BMC bioinformatics, vol. 7, no. 1. pp.262,

2006.

21. L. Wang and S. J. Brown, "Prediction of DNA-binding residues from sequence

features," Journal of bioinformatics and computational biology, vol. 4,

no. 06. pp.1141-1158, 2006.

	

105 	

	

22. L. Wang and S. J. Brown, "BindN: a web-based tool for efficient prediction of

DNA and RNA binding sites in amino acid sequences," Nucleic acids

research, vol. 34, no. suppl 2. pp.W243-W248, 2006.

23. L. Breiman, "Random forests," Machine learning, vol. 45, no. 1. pp.5-32, 2001.

24. B. S. Yang, X. Di, and T. Han, "Random forests classifier for machine fault

diagnosis," Journal of mechanical science and technology, vol. 22, no. 9.

pp.1716-1725, 2008.

25. H. E. Osman, "A binary classification and online vision." Neural Networks,

2009.IJCNN 2009.International Joint Conference on , pp. 1142-1148.

2009. IEEE.

26. A. Mathur and G. M. Foody, "Multiclass and binary SVM classification:

Implications for training and classification users," Geoscience and

Remote Sensing Letters, IEEE, vol. 5, no. 2. pp.241-245, 2008.

27. G. Liu, X. Zhang, and S. Zhou, "Multi-class Classification of Support Vector

Machines Based on Double Binary Tree." Natural Computation,

2008.ICNC'08.Fourth International Conference on vol. 2, pp. 102-105.

2008. IEEE.

28. M. Kubat, K. Sarinnapakorn, and S. Dendamrongvit, "Induction in Multi-Label

Text Classification Domains." Advances in Machine Learning II. pp.

225-244. 2010. Springer.

	

106 	

	

29. C. N. Silla Jr and A. A. Freitas, "A survey of hierarchical classification across

different application domains," Data Mining and Knowledge Discovery,

vol. 22, no. 1-2. pp.31-72, 2011.

30. L. J. Jensen, R. Gupta, N. Blom et al., "Prediction of human protein function

from post-translational modifications and localization features," Journal

of molecular biology, vol. 319, no. 5. pp.1257-1265, 2002.

31. M. Riley, "Functions of the gene products of Escherichia coli," Microbiological

reviews, vol. 57, no. 4. pp.862, 1993.

32. W. R. Weinert and H. S. r. Lopes, "Neural networks for protein classification,"

Applied Bioinformatics, vol. 3, no. 1. pp.41-48, 2004.

33. A. Sun and E. P. Lim, "Hierarchical text classification and evaluation." Data

Mining, 2001.ICDM 2001, Proceedings IEEE International Conference

on , pp. 521-528. 2001. IEEE.

34. C. D. Nguyen, T. A. Dung, and T. H. Cao, "Text classification for DAG-

structured categories." Advances in Knowledge Discovery and Data

Mining. pp. 290-300. 2005. Springer.

35. A. Secker, M. N. Davies, A. A. Freitas et al., "An experimental comparison of

classification algorithms for hierarchical prediction of protein function,"

Expert Update (Magazine of the British Computer Society's Specialist

Group on AI), vol. 9, no. 3. pp.17-22, 2007.

	

107 	

	

36. W. Bi and J. T. Kwok, "Multi-label classification on tree-and dag-structured

hierarchies." Proceedings of the 28th International Conference on

Machine Learning (ICML-11) , pp. 17-24. 2011.

37. N. Alaydie, C. K. Reddy, and F. Fotouhi, "Exploiting label dependency for

hierarchical multi-label classification." Advances in Knowledge

Discovery and Data Mining. pp. 294-305. 2012. Springer.

38. J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, no. 1.

pp.81-106, 1986.

39. "Dimensionality reduction." http:// en.wikipedia.org/ wiki/

Dimensionality_reduction, 2014.

40. H. Blockeel, L. De Raedt, and J. Ramon, "Top-down induction of clustering

trees," arXiv preprint cs/0011032, 2000.

41. G. Pandey, C. L. Myers, and V. Kumar, "Incorporating functional inter-

relationships into protein function prediction algorithms," BMC

bioinformatics, vol. 10, no. 1. pp.142, 2009.

42. H. Lo, S. Lin, and H. M. Wang, "Generalized k-Labelsets Ensemble for Multi-

Label and Cost-Sensitive Classification,", 2013.

43. G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining multi-label data." Data

mining and knowledge discovery handbook. pp. 667-685. 2010.

Springer.

	

108 	

	

44. G. Tsoumakas and I. Vlahavas, "Random k-labelsets: An ensemble method for

multi label classification." Machine Learning: ECML 2007. pp. 406-

417. 2007. Springer.

45. "Mulan: A Java Library for Multi-Label Learning." . 2014.

46. H. Qu, S. Zhang, H. Liu et al., "A multi-label classification algorithm based on

label-specific features," Wuhan University Journal of Natural Sciences,

vol. 16, no. 6. pp.520-524, 2011.

47. X. Kong, B. Cao, and P. S. Yu, "Multi-label classification by mining label and

instance correlations from heterogeneous information networks."

Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining , pp. 614-622. 2013. ACM.

48. B. Chen, Y. Ding, and D. J. Wild, "Assessing drug target association using

semantic linked data," PLoS computational biology, vol. 8, no. 7.

pp.e1002574, 2012.

49. X. Kong, P. S. Yu, Y. Ding et al., "Meta path-based collective classification in

heterogeneous information networks." Proceedings of the 21st ACM

international conference on Information and knowledge management ,

pp. 1567-1571. 2012. ACM.

50. X. Kong, X. Shi, and S. Y. Philip, "Multi-Label Collective Classification." SDM

vol. 11, pp. 618-629. 2011. SIAM.

	

109 	

	

51. R. Nicolas, A. Sancho-Asensio, E. Golobardes et al., "Multi-label classification

based on analog reasoning," Expert Systems with Applications, vol. 40,

no. 15. pp.5924-5931, 2013.

52. L. Enrique Sucar, C. Bielza, E. F. Morales et al., "Multi-label classification with

Bayesian network-based chain classifiers," Pattern Recognition Letters,

2013.

53. R. Cerri, R. C. Barros, and A. C. De Carvalho, "Hierarchical multi-label

classification using local neural networks," Journal of Computer and

System Sciences, vol. 80, no. 1. pp.39-56, 2014.

54. "HMC Software and Datasets." http://dtai.cs.kuleuven.be/clus/hmcdatasets/ .

2008.

55. D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," the Journal

of machine Learning research, vol. 3. pp.993-1022, 2003.

56. S. Arlot and A. Celisse, "A survey of cross-validation procedures for model

selection," Statistics surveys, vol. 4. pp.40-79, 2010.

57. A. Santos, A. Canuto, and A. F. Neto, "A comparative analysis of classification

methods to multi-label tasks in different application domains,"

Int.J.Comput.Inform.Syst.Indust.Manag.Appl, vol. 3. pp.218-227, 2011.

58. M. Kubat and S. Matwin, "Addressing the curse of imbalanced training sets:

one-sided selection." ICML vol. 97, pp. 179-186. 1997.

	

110 	

	

59. A. Singhal, "Modern information retrieval: A brief overview," IEEE Data

Eng.Bull., vol. 24, no. 4. pp.35-43, 2001.

60. Y. Yang, "An evaluation of statistical approaches to text categorization,"

Information retrieval, vol. 1, no. 1-2. pp.69-90, 1999.

61. V. Gjorgjioski, D. Kocev, and S. D++eroski, "COMPARISON OF

DISTANCES FOR MULTI-LABEL CLASSIFICATION WITH PCTs,"

62. K. Brinker, J. Frnkranz, and E. Hllermeier, "A unified model for multi label

classification and ranking." Proceedings of the 2006 conference on ECAI

2006: 17th European Conference on Artificial Intelligence August 29--

September 1, 2006, Riva del Garda, Italy , pp. 489-493. 2006. IOS

Press.

63. M. L. Zhang and K. Zhang, "Multi-label learning by exploiting label

dependency." Proceedings of the 16th ACM SIGKDD international

conference on Knowledge discovery and data mining , pp. 999-1008.

2010. ACM.

64. G. Tsoumakas and I. Katakis, "Multi-label classification: An overview,"

International Journal of Data Warehousing and Mining (IJDWM), vol.

3, no. 3. pp.1-13, 2007.

65. D. Damm, C. Fremerey, V. Thomas et al., "A digital library framework for

heterogeneous music collections: from document acquisition to cross-

modal interaction," International Journal on Digital Libraries, vol. 12,

no. 2-3. pp.53-71, 2012.

	

111 	

	

66. "Internet Archieve." http://archive.org/index.php . 2014.

67. "Google Books." http://books.google.com . 2014.

68. "Open Library." http://openlibrary.org . 2014.

69. "New York Public Library." http://www.nypl.org . 2014.

70. "Wiley Online Library." http://onlinelibrary.wiley.com/ . 2014.

71. D. D. Lewis, "Reuters-21578 text categorization test collection." . 2014.

72. "The 20 Newsgroups data set." http://qwone.com/~jason/20Newsgroups/ . 2014.

73. W. B. Frakes and R. Baeza-Yates, "Information retrieval: data structures and

algorithms," Prentice Hall; 1 edition (June 22, 1992).

74. M. F. Porter, "An algorithm for suffix stripping," Program: electronic library

and information systems, vol. 14, no. 3. pp.130-137, 1980.

75. K. J. Cios, R. W. Swiniarski, W. Pedrycz et al., "Feature Extraction and

Selection Methods." Data Mining. pp. 133-233. 2007. Springer.

76. K. K. Dobbin and R. M. Simon, "Optimally splitting cases for training and

testing high dimensional classifiers," BMC medical genomics, vol. 4, no.

1. pp.31, 2011.

77. V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and

reversals." Soviet physics doklady vol. 10, p.707. 1966.

78. T. Fagni and F. Sebastiani, “On the selection of negative examples for

hierarchical text categorization.” In Proceedings of the 3rd language

	

112 	

	

technology conference, pp. 24–28, 2007.

79. T. Fagni and F. Sebastiani, “Selecting negative examples for hierarchical text

classification: An experimental comparison.” Journal of the American

Society for Information Science and Technology, vol. 61, no.11. pp.256–

2265, 2010.

80. C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel, “Decision trees

for hierarchical multi-label classification.” Machine Learning, vol. 73,

no. 2. pp.185–214, 2008.

81. “Lancaster University”. http://www.comp.lancs.ac.uk/computing/research/

stemming/ general/porter.htm . 2014.

	

	

 االتأثر من االأمثلة االمتعدددةة االتصنیيف

 ھھھهند ھھھهزااعع ططلالل االشریيف

 االمستخلص

اانن عملیية تصنیيف االنصوصص االكتابیية ھھھهي باختصارر ووضع كل مثالل (كتابب ااوو ووثیيقة نصیية) في صنف ووااحد ااوو

ااكثر. وواابسط عملیية یيتم فیيھها ااستخداامم االكمبیيوتر للتصنیيف تحت مجالل تعلیيم االالة (ااوو اانن االكمبیيوتر یيتعلم من

جزئیين فقط ثم نصنع من ھھھهذاا االامثلة وویيصبح ااكثر فعالیية مع االزمن) ھھھهي اانن ننشي مصنف ووااحد یيصنف االى

ووااحد للعمل تثم یيتم تشغیيل ھھھهذهه االمصنفاتت في ووقاالمصنف عدةة صورر بحیيث تلائم كل منھها مجالل محددد٬،

بالتوااززيي. 	

ووقد نجد اانن تصنیيف مكتبة ررقمیية بمافیيھها من كمیياتت كبیيرةة من االكتب وواالوثائق ھھھهو مثالل جیيد یيعطي دداافع قويي

بحیيث یيتنج في االنھهایية لى ااصنافف متعدددةة ثم ااصنافف فرعیية ووھھھهكذاا. لمجالل االبحث. بحیيث یيتم تصنیيف االكتب اا

تصنیيف شجريي ھھھهیيكلي –- - 	

ھھھهل یيمكن اانن یيتم تصنیيف ووثیيقة ووااحدةة االى –في مجالل ھھھهذاا االبحث نجد اانن ھھھهناكك نقظة ااخرىى قیيمة للبحث ووھھھهي

متعددد یيسمى تصنیيفل في بحثنا في مجالل ما اا كانت االاجابة بنعم٬، فاننا في ھھھهذهه االحالة سنعمااذذااكثر من صنف٬،

االاصنافف للوثیيقة االوااحدةة. 	

ر في االتصنیيف تواانن االدررااسة االتي نقومم بھها ھھھهنا ھھھهي تبحث في ااظظھهارر مدىى االفائدةة االعائدةة من ااستخداامم االكمبیي

م االالةتعلیي –االالي بطریيقة % من ٬50، ووھھھهل ھھھهي مفیيدةة اامم لا. فمثلا اانن كنا بحاجة االى ااستخداامم ااكثر من -

% 10دةة عائدةة االیينا. وواانن كنا بحاجة االى ائوتر٬، فانن ذذلك قد یيكونن مجھهودد كبیير وولا توجد فاالمحتوىى لتعلیيم االكمبیي

فقط من االمحتوىى٬، فانن ھھھهناكك فائدةة كبیيرةة لنا من ااستخداامم االكمبیيوتر.

	

	

ااخیيراا٬، نریيد اانن نبحث اانن كانن ھھھهناكك علاقة بیين االمصنفاتت٬، بحث ھھھهل نجد اانن االوثیيقة االتابعة لصنف معیين٬، ھھھهي

افف االعلیيا لھه في االشجرةة٬، اانن كانت مصنفة ھھھهل ھھھهیيا تعتبر مرجع لمجیيع االاصنافف االتي تاتي تتبع جمیيع االاصن

تحتھها في االشجرةة. 	

هه وومقاررنتھه مع االانظمة االاخرىى االموجوددةة.ررسنقومم بتصمیيم نموذذجج لتصنیيف االوثائق تلقائیيا ووااختبا 	

	

	

االتأثرر منن االأمثلة االمتعددددةة االتصنیيفف

ططلالل االشرریيففھھھهندد ھھھهززااعع

بحثث مقددمم لنیيلل ددررجة االماجستیيرر في االعلوومم (علوومم االحاسباتت)

ااشرراافف

دد.ووددیيع صالح االحلبي

كلیية االحاسباتت وونظظمم االمعلووماتت

جامعة االملكك عبدداالعززیيزز

جددةة ـ االمملكة االعرربیية االسعووددیية

)٢۲٧۷/٨۸/١۱٤٣۳٥مم (٢۲٠۰١۱٤ھھھهـ ـ یيوونیيوو ١۱٤٣۳٥ شعبانن

	

	

بسم الله االرحمن االرحیيم

	

	

االتأثرر منن االأمثلة االمتعددددةة االتصنیيفف

ھھھهندد ھھھهززااعع ططلالل االشرریيفف

بحثث مقددمم لنیيلل ددررجة االماجستیيرر في االعلوومم (علوومم االحاسباتت)

كلیية االحاسباتت وونظظمم االمعلووماتت

جامعة االملكك عبدداالعززیيزز

جددةة ـ االمملكة االعرربیية االسعووددیية

)٢۲٧۷/٨۸/١۱٤٣۳٥مم (٢۲٠۰١۱٤ھھھهـ ـ یيوونیيوو ١۱٤٣۳٥ شعبانن

