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Induction From Multi-label Examples 

 

By: Hind Hazza Alsharif 

 

Abstract 

 

          The task of text categorization is related to the assignation of one or 

more classes to a document. In order to solve this problem, the simplest 

machine learning approaches induce a binary classifier separately for each 

class, and then use these classifiers in parallel. An example of application 

belonging to this group and solved in this thesis is represented by a digital 

library collection which was classified into classes and sub-classes in a 

hierarchical order. Another important issue considered is the fact that a 

document can belong to more than one class, and therefore, a high 

performance multi-class label classifier was employed.   

        The main general objective of the current work is to point out the 

advantages of machine learning techniques for applications in text 

categorization area.  Another aspect is related to the database requirements 

of these techniques in terms of training and testing, when high 

performance is desired. In this context, two situations were identified: i) 

10 to 15% of the data used for training, and testing and ii) > 50% of the 

data set used for training and testing. In the latter case, the machine 
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learning may not have a significant contribution, as the computational 

effort and time consumed are very high. However, if 10 to 15% of the data 

set is needed, then, machine learning has a great contribution. 

      The last issue approached in this research is the inter-class relation, 

which means, if the example is classified to belong to a class C then the 

example belong to parents and grandparents of the class C. The main 

question arising was: is opposite way true too?         

         In order to answer all these important aspects, a framework to 

automatically classify documents was employed. 
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 Introduction 

 

The main goal of a classification induction process is to find the mechanism 

(rules) able to place an example or a stream of examples into sets of categories called 

classes. In the case of multi-label classification induction, an example is allowed to 

belong to more than one class at a time, and the classes are hierarchically ordered. 

This is referred to as Hierarchical Multi label Classification (HMC). The 

classification of a library collection (where book titles represent the examples and 

each of the scientific field represents a class) is an example of an HMC problem. The 

class-to-class relations are defined by a Directed Acyclic Graph (DAG) (Figure 1.1) 

which indicates that there are no cycles. The nodes and the edges define the structure 

of the network, and the conditional probabilities are the parameters to give the 

structure to the graph [1]. 

 

Figure 1.1: An example of a DAG-structured class hierarchy as presented in [2] 

In this research, the focus is on the HMC problem, with emphasis on several 

case studies used for drawing observations and reaching general conclusions. Aiming 
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to build a proper induction system for these problems, the top down approach was 

preferred. It started by inducing a classifier for each class of the highest level of the 

DAG and continued downward by employing the higher-level classifiers when 

creating the training sets for lower-level classifiers. 

The scope was to develop a proprietary methodology and algorithm and 

compare it with a couple of many popular algorithms including Support Vector 

Machines (SVM) [3-5], K-Nearest Neighbor (KNN) [6] and Naïve Bayes [7]. The 

comparative study consisted in: i) classifying examples into hierarchically ordered 

classes and ii) finding their inter-class relation. 

As the work in this research progressed and as recommended by [2], we 

realized that HMC’s performance has to be evaluated along somewhat different 

criteria than those used in classical machine learning. For example, let C be a set of 

classes to which an example X belongs to. A perfect classifier will label X with all 

classes from C, never suggesting any class from outside C; moreover, an HMC 

usually requires that any X that has been labeled with C! should also be labeled with 

all ancestors of C! in the class hierarchy. To be able to reflect these requirements in 

performance evaluation, an adequate extensions of precision and recall introduced by 

Clare et al. [8] was used. 

1.1. Problem Statement 

A graph mainly consists of a set of nodes, N, and a set of edges, E, where an 

edge is an ordered pair of nodes, (N!, N!) ∈ E ⊆ {N × N }. In this pair, Np is known 

as a parent, and Nc as a child. A path (Na → Nc) from an ancestor (Na) to a child (Nc) 

is referred to be a series of edges, {(𝑁!, 𝑁!), (𝑁!, 𝑁!), . . . , (𝑁!!!, 𝑁!)} in a way that 
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  𝑁! = Na and Nn = Nc. The existence of a path in a DAG, is Na → Nc, guarantees the 

non-existence of the opposite-direction path, Nc → Na. A leaf node is known to be a 

node without any child, and a root node is known to be a node without any parent.  

In this research, this problem is addressed by considering a set of class labels 

(C) whose mutual relations are specified by a class hierarchy (H) which has the form 

of a DAG in which each node represents only one class.  

X ⊂ 𝑅!  is a finite set of examples, each described by a set of p numeric 

attributes. We assume that each xi ∈ X is assigned a set of class labels, L = {𝐶! , ..., 𝐶! 

} ⊆ H (all classes belong to the given class hierarchy). An example belonging to class 

Cc is assumed to also belong to all Cc’s ancestor classes (Ca). This property is called 

“hierarchical constraint”. 

There are two versions of the hierarchical classification task: i) the Mandatory 

Leaf-Node Problem (MLNP), where only the leaf-node classes are used and; ii) the 

Non-Mandatory Leaf Node Problem (NMLNP), where an example can be labeled 

with any class from the given class hierarchy. Considering the class hierarchy from 

Figure 1.1, MLNP permits an example to be labeled only with a subset of {C1.1, 

C2.1, C2.2.1, C2.2.2}, but NMLNP allows also the other class labels (e.g., C1 or 

C2.2). This research focuses on the general NMLNP, because the examples are 

assigned to any node in the hierarchy. 

Two main questions were addressed in this research: 

• Suppose that a machine learning algorithm has already induced classifiers for 

some highest-level classes. Does this facilitate any future attempts at the 
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induction of lower-level classes? For instance, if an example was classified to 

a lower level class, can this example belong to the parent and grandparent 

classes? 

• Turning this upside down, suppose we know the lowest-level classes. Can this 

be exploited in the induction of the parents of these classes? For instance, if an 

example was classified in the upper level class, can this example be a parent of 

the lower level classes? 

Aiming to answer these questions, a proprietary algorithm will be built. It will 

test whether an example is classified into its corresponding child and grandchild, as 

well as if the grandchild is belonging to its accurate parent and grandparent. The focus 

is on the inter-class relations and we want to look at the parent-child and child-parent 

relations, this aspect representing the main contribution of this study.  

The significance of the research is the motivation for the use of machine 

learning in digital libraries which can be defined as follow: 

• The digital library needs to be able to identify all documents relevant to a 

user’s query. This function is sometimes supported by an indexing system in 

which each document is tagged with the labels of all the topics it represents.  

• The indexing system is relatively easy to create in a small collection: an expert 

reads each single document, and then decides which topics it represents.  

• In large collections, this might be expensive and clearly impossible if 

hundreds of thousands of documents are added to the library every week, or 

even on a daily basis.  
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• In this latter case, one solution is to classify manually only a subset of the 

documents, and then employ the training set, to obtain the induction of a 

classifier.  

• The induced classifier then labels those documents that have not been 

classified manually.  

• The principle can be applied to other domains, not just digital libraries.  

The main research question is the following: how many documents should we 

classify manually if we want to induce a high-performance classifier? To put the 

question in another format: How much can be gained from the use of machine 

learning? For example, suppose we have 106 documents. If we manually classify only 

a few, the induced classifier will over fit the training examples, and thus perform 

poorly on the remaining documents. The situation will improve if the training set 

consists of about 10% of the collection or more; but then, the price of manual 

classification will become prohibitive. This motivates an experimental study whose 

goal is to identify the right size of the training set, and this is what we want to do in 

this research.   

Possible conclusions: 

• It may turn out that only a small percentage of all examples are enough for the 

induction of a relatively high-performance classifier. In this case, the use of 

machine learning is justified.  

• Conversely, it may turn out that even using 50% of the examples for training 
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is not enough. In this case, machine learning does not seem to help.  

• Most likely, the observed result will be somewhere between these two 

extremes.  

• We might want to verify if the observation is the same in each of the studied 

experimental domains. This means, we want to repeat this experiment for 

several different domains.  
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Background 

 

Over the past few years, studies of induction from multi-label examples 

have targeted two specific strategies: induction of sets of binary classifiers, and 

induction of one large multi-label classifier. For the induction of sets of binary 

classifiers, mechanisms based on Bayesian theory were studied by Friedman et al. 

[7], and McCallum and Nigam [9]. The latter was investigated by Baoli et al. [6], 

and the currently popular SVM were discussed by Joachimis [4] and Kwok [10]. 

Unfortunately, binary classifiers ignore inter-class relations, which sometimes lead 

to performance degradation. In this study, the focus is on these inter-class relations.  

 

2.1 Bayesian Networks: 

The Naïve Bayes classifier learns (from training data) the conditional 

probability of each attribute A! given the class label C. Classification is then done by 

applying Bayes rule to compute the probability of C given the particular instance of 

A! , . . . , A! , and then predicting the class with the highest posterior probability. This 

computation is rendered feasible by making a strong independence assumption: all the 

attributes A! are conditionally independent given the value of the class C. The term 

independence indicates the probabilistic independence that is, A is independent of B.  

A naive Bayesian classifier has the simple structure shown in Figure 2.1. This 

network captures the main assumption behind the naive Bayesian classifier, namely, 

that every attribute (every leaf in the network) is independent from the rest of the 
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attributes, given the state of the class variable (the root in the network). Thus, it is said 

that the performance of naive Bayes is somewhat due its dependency [9]. 

 

Figure 2.1: The structure of the naive Bayes network. 

 Friedman et al. [7] evaluated several approaches for inducing classifiers from 

data based on the theory of Bayesian networks. They presented a method they call 

Tree Augmented Naive Bayes (TAN), which outperforms the base algorithm, and at 

the same time maintains the computational simplicity (with no search involvement) 

and robustness that characterize Naive Bayes. Their empirical evaluation included 

TAN and Chow and Liu (CL) multi-net classifier [11]. CL describes a procedure for 

constructing a Bayesian network from data. Such procedure reduces the problem of 

constructing a maximum likelihood tree to finding a maximal weighted spanning tree 

in a graph. The problem of finding this type of tree is to select a subset of arcs from a 

graph such that the selected arcs constitute a tree and the sum of weights attached to 

the selected arcs is maximized. Both TAN and CL multi-nets reflect a good tradeoff 

between the quality of the approximation of correlations among attributes and the 

computational complexity in the learning stage. The learning procedures are 
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guaranteed to find the optimal tree structure, and, as the experimental results show, 

they perform well in practice against state-of-the-art classification methods.  

       McCallum and Nigam [9] aimed to clarify the confusion between two first-order 

probabilistic models (making the naïve Bayes assumption applied for text 

classification) by describing their differences and details.  The first uses a multivariate 

Bernoulli model (a Bayesian Network with no dependencies between words and 

binary word features as in [13], [14]), while the other uses a multinomial model (a 

unigram language model with integer word counts as presented in [15, 16]). The 

results on five text corpora indicated that the multivariate Bernoulli performs well 

with small vocabulary sizes, but that the multinomial version usually performs even 

better at larger vocabulary sizes providing on average a 27% reduction in error over 

the multivariate Bernoulli model at any vocabulary size. 

2.2 K-Nearest Neighbor: 

In a text categorization system based on the K-Nearest Neighbor algorithm 

(KNN), k is the most important parameter. To classify a new document, the k-nearest 

documents in the training set are first determined. The prediction of categories for this 

document can then be made according to the category distribution among the k 

nearest neighbors. Generally speaking, the class distribution in a training set is not 

even; some classes may have more samples than others. The system's performance is 

very sensitive to the choice of the parameter k. And it is very likely that a fixed k 

value will result in a bias for large categories, and will not make full use of the 

information in the training set [6]. 

Baoli et al. [6] studied a text categorization system based on KNN, and an 
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improved KNN strategy (in which different numbers of nearest neighbors for different 

categories are used instead of a fixed number across all categories) was proposed. The 

numbers of nearest neighbors selected for different categories are adopted to their 

sample size in the training set. Experiments on two different datasets showed that the 

proposed approach is less sensitive to the parameter k than the traditional ones, and 

can properly classify documents belonging to smaller classes when employing a large 

k. The strategy is more efficient with cases where estimating the parameter K via 

cross-validation is not possible and the class distribution of a training set is skewed.  

K- KNN method is often used in text document classification. It is considered 

as the simplest of all machine learning algorithms. An object is classified by a 

majority vote of its neighbors, with the object being assigned to the class most 

common amongst its k nearest neighbors. The accuracy of the k-NN algorithm is not 

guaranteed if the feature scales are not consistent with their importance. Therefore, it 

is sensitive to the local structure of the data. Random Forest (RF) classifier can handle 

irrelevant feature and gives estimate of what variables are important in the 

classification [17]. 

2.3 Random Forest: 

Neural network (NN) based approaches are applicable to multilevel non-linear 

problems. The variables transformation is automated in the computational process. 

The main disadvantage of NNs is the fact that they are slow when many training data 

sets exist. Therefore, they are not suitable in all cases of classification problems. On 

the other hand, RF can handle thousands of input data, faster than other methods and 

in the same time avoid model over fitting [17].  
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In [17], Aung and Hla proposed a multi-category classification for web pages 

by using RF classifier. The accuracy of the proposed approach was compared with 

decision tree classifier using the same yahoo web pages, the results showing that the 

proposed approach was suitable for multi-category web page classification. 

Wang et al. [18] goal was to predict DNA-binding residues directly from 

amino acid sequence data using RF. Previous methods have been reported for 

predicting DNA-binding. For example, Ahmad et al. [19] analyzed the structural data 

protein-DNA complexes, and used the amino acid sequences to train NNs for DNA-

binding site prediction. Yan et al. [20] constructed Naïve Bayes classifiers using the 

amino acid identities of DNA-binding sites and their sequence neighbors. However, 

the prediction accuracy was low in these studies, and this is because amino acid 

sequences were directly used for classifier construction. It was found that classifier 

performance was significantly improved by the use of biochemical features for input 

encoding, and the SVM classifier outperformed the NN predictor [21, 22]. 

RF learning algorithm, has the capability of handling large number of input 

variables and avoiding model over fitting [23]. The results from this study indicate 

that DNA-binding site prediction can be significantly improved by using the RF-

based approach with biochemical features and several new descriptors of evolutionary 

information for input encoding.  

Yang et al. [24] investigated the possibilities of applying RF in machine fault 

diagnosis and proposed a hybrid method combined with genetic algorithm to improve 

the classification accuracy. The application research on RF is important and necessary 

because of its fast execution speed, the characteristics of tree classifier, and high 

performance in machine faults diagnosis. The proposed method is demonstrated by a 
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case study on induction motor fault diagnosis. Experimental results indicate the 

validity and reliability of the RF-based fault diagnosis method, a high accuracy rate of 

diagnosis (98.89%) being obtained. The comparison result also showed that the 

optimized RF-based method is competitive with other classification method. 

In his study [25], Osman solved a binary classification problem, where an 

ensemble of Decision Tree (DT) based classifiers is trained on-line, new images are 

always added and the recognition decision is made without delay. The ensemble of 

decision tree classifier is combined with forest classifier using averaging, generated 

on-line RF classifier. To represent an object visual features, they first employ object 

descriptor models based on bag of covariance matrices, and after that, they run their 

online RF learner to select object descriptors and to learn an object classifier. It was 

considered how machine learning models for object recognition categories can build 

‘incrementally’ or ‘on line’, so that new images were continuously added and the 

recognition decision was made without delay. The main computational advantage in 

using RF classifier is that each DT classifier can be trained independently from each 

other and in parallel. Results showed superior performance with the standard RF, 

Adaboost, and SVM classifier.  

2.4 Support Vector Machine: 

SVM aims to fit an Optimal Separating Hyperplane (OSH) between classes by 

focusing on the training samples that lie at the edge of the class distributions. The 

OSH is oriented such that it is placed at the maximum distance between the sets of 

support vectors, which leads to a more accurately generalization and training error 

minimization, similar to NNs [26].  
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Joachims [4] introduced the SVM for text categorization from examples by 

analyzing particular properties of learning with text data. Practical results showed that 

SVM's achieved good performance on text categorization tasks, substantial 

improvements over the currently best performing methods being observed. Kwok [10] 

studied SVM in text categorization because it allows easy incorporation of new 

documents into an existing trained system. Also, dimension reduction is optional with 

SVM's. Therefore, an SVM adapts efficiently in dynamic environments that require 

frequent additions to the document collection. The author investigated a different 

approach of integrating both dimension reduction and classification. The study 

showed the SVM’s characteristics that make it very useful to the problem of text 

categorization and of information retrieval in general.  SVMs can obtain better results 

by using them as pre-processing tools.  

The binary SVM can be extended for a one-shot multiclass classification. The 

one-shot multiclass SVM has a relative advantage to the binary SVM-based 

approaches. This advantage is represented by the fact that it needs to be optimized 

only once. The multiclass SVM classification of all classes occurs in a single step 

[26].  

Mathur and Foody [26], aimed to evaluate the multiclass and binary-based 

SVM approaches for the derivation of a multiclass land cover classification from 

remotely sensed data. They suggested two approaches for multi class classification by 

SVM: 

• “one-against-all” approach, where a set of binary classifiers (each trained to 

separate one class from the rest) is undertaken and each pixel is allocated to 
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the class for which the largest decision value was determined. 

• “one-against-one” approach, where, a series of classifiers are applied to each 

pair of classes, with the most commonly computed class label kept for each 

pixel. 

For the one-shot multiclass SVM approach, parameters need be optimized 

only once, while with the one-against-one and one-against-all binary strategies a 

series of analysis are required. The one-against-all and one-against-one strategies 

required five and ten optimizations, respectively. Also, the smallest number of 

support vectors was used with the one-shot multiclass SVM classifier, while other 

strategies for multiclass classification required a larger number of support vectors. 

From the results, it was obvious that the one-shot multiclass SVM classification 

yielded the most accurate classification. One problem observed was that the one-

against-all approach was not able to label all cases appropriately. 

Liu et al. [27] proposed a multi-class classification method of SVM based on 

double binary tree (DBT-SVM). Each sub-classifier of BT-SVM is modified and after 

unknown samples are classified by the modified BT-SVM, the negative output of its 

final sub-classifier can be classified again by adding an auxiliary BT-SVM. Thus, the 

misclassified samples mixed in the negative output can be classified correctly. 

Existing problem in BT-SVM method include:  

• 'Irreversibility', which occurs once a sub classifier mistakes a positive sample 

for a negative one, so the result is incorrect and there is no chance for re-

classification. 

• 'Error accumulation' phenomenon. It appears when each sub-classifier in the 
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hierarchy of a binary tree will mistake some positive samples for negative 

ones and then input them into the next-level sub-classifiers, resulting in an 

accumulation of the misclassified samples in the samples waiting for 

classification. 

• The upper sub-classifiers in the binary tree structure of BT-SVM have greater 

influence over the generalization capacity of the overall classification model. 

DBT-SVM turned to be able to provide a higher general classification 

accuracy compared with the BT-SVM. It improves the classification accuracy of the 

earlier classified classes while lowers the classification accuracy of the latter 

classified classes. Therefore, the classification order of the classes should be decided 

according to their importance without applying randomness.  

Kubat et al. [28] proposed a new technique for induction in multi-label text 

classification domains. They applied a well-known boosting algorithm, 

AdaBoost.MH, as a “baseline induction algorithm” for the induction of a set of sub 

classifiers, each from the same training set. In addition, they developed a new fusion 

method around the principles of the Dempster-Shafer Theory, called DST-fusion. 

Experiments showed that DST-fusion can lead to impressive savings in the 

computational time without impairing the classification performance. DST-Fusion 

and “weighted sum” outperformed the more traditional methods of plain voting and 

weighted majority voting. Moreover, when comparing DST-Fusion with a more 

traditional approach, it was observed that, the Multi-Label C4.5 (based on induction 

of decision trees), might be a better choice.  
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2.5 Hierarchical Multi-label Classification Strategies 

Silla and Freitas [29] explored the solutions to the HMC problems and 

presented three fundamental strategies: 1) flat classification, 2) top-down approach 

“local classification”, 3) the “big-bang” approach or global classification. 

2.5.1 Flat classification  

The advantage of this strategy is that it enables the use of traditional machine-

learning techniques such as neural networks, decision trees, or SVM to be 

implemented in the HMC as reported by [30-32]. Basically it ignores the class 

hierarchy and deals only with the leaf-node classes (as if the problem were MLNP), 

whether by a single multi-label classifier or by a set of binary classifiers (a separate 

one for each leaf node). If the leaf-node class label is known for each example, this 

strategy is possible. Besides, if the nature of the application seems to allow the user to 

afford the inability to identify non-terminal classes.  

2.5.2 Top-down approach (local classifier): 

The most common approach in HMC induction is the local classifier. In the 

simplest scenario, for each node in the DAG-specified class hierarchy, a separate 

(local) classifier is induced, and the processing is started by creating a whole 

hierarchy of classifiers, from top levels going downwards.  

The main advantage of this method is simplicity. On the other hand, the 

approach tends to suffer from “error propagation”, which means that 

misclassifications of the higher- level classes are propagated to the lower levels. 

The first experiments with this approach were provided by Koller and Sahami 
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[14] by choosing Naive Bayes to induce each individual class. The authors 

experimented with tree-structured class hierarchies with no more than one parent for 

any node and limited to just two levels. 

Fagni and Sebastiani [78, 79] compared four different policies (Sibling, ALL, 

BestGlobal, and BestLocal) to generate a set of binary training data. Tree-structured 

hierarchical versions of boosting and SVM called TreeBoost and TreeSVM were 

used. The best results were obtained with the Sibling policy in which the negative 

training examples of the ith node are all positive examples of its Sibling nodes in the 

hierarchy.  

This strategy was applied to text classification by Sun and Lim [33], where the 

class hierarchy was a plain tree structure. They induced two SVMs for each class: a 

local classifier and a sub-tree classifier. An example is labeled as Ci by the local 

classifier, while the sub-tree classifier decides whether or not this example should be 

passed to ci’s sub-classifiers. This approach was extended to domains with DAG-

structured class hierarchies, by Nguyen et al. [34], the DAG hierarchy being 

transformed into a set of tree hierarchies. Experimental results indicated high 

classification performance as well as high computational costs. 

Looking to further improve the performance, Secker et al. [35] used several 

induction algorithms for each node of the hierarchy: Naive Bayes, SMO, 3-NN, etc. 

Ten classifiers were trained for each node, and the one with the best classification 

results was selected. This improved classification accuracy, but the computational 

costs were even higher than in the previous attempt. 

Bi and Kwok [36] applied the Kernel Dependency Estimation (KDE) to 
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reduce the number of classes in the hierarchy during the training process. This 

procedure was applied because the number of classes in the hierarchy is usually 

unmanageable. The authors proposed an algorithm called “Condensing Sort and 

Selection Algorithm (CSSA)” for the tree structured hierarchies and, then, extended it 

to the CSSAG algorithm for the DAG-structured hierarchies. However, they did not 

report experimental results regarding induction time and the number of reduced 

classes. 

Alaydie et al. [37] proposed a framework called “HiBLADE (Hierarchical 

multi-label Boosting with Label Dependency),” applied to tree-structured hierarchies. 

The classifier for each class is a boosting-type algorithm, such as ADABOOST, 

where the new model for each boosting iteration is updated by utilizing the proposed 

Baysian correlation.  

2.5.3 The “big-bang” approach (global classifier): 

Some authors preferred to induce one big (global) classification model to 

cover the entire class hierarchy, instead of inducing a separate binary classifier for 

each node. In this manner, mutual interdependencies of the classes can be easily taken 

into account, and the global classifier is often smaller than the total of the local 

classifiers. 

Clare and King [8] developed a hierarchical extension to the decision-tree 

generator C4.5 [38] and applied it to functional-genomics data. Their system is known 

as HC4.5, a mechanism for weighing the entropy formula (in order to give higher 

priority to more specific classes) being induced. 

Seeking to make the decision-tree paradigm applicable to hierarchical 
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domains, an attempt was reported by Blockeel et al. [39] whose Clus-HMC is a 

hierarchical version of the earlier “predictive clustering tree” (PCT) [40]. Ven et al. 

[80] improved Clus-HMC so it could be used in DAG-specified class hierarchies. 

Schietgat et al. [12] proposed an ensemble version of the algorithm Clus-HMC-ENS. 

Although the ensemble concept can improve classification accuracy, its 

computational costs are much higher than those of the original Clus-HMC. 

A global-approach hierarchical framework based on the K-Nearest Neighbor 

classifier (k-NN), was proposed by Pandey et al. [41]. The system’s improvements 

include: i) a Lin’s semantic similarity measure used as a distance measure; ii) the 

prediction function of the i-th class incorporates the inter-relationship score of the i-th 

class to other classes in the hierarchy; and iii) the mechanism to filter insignificant 

class inter-relationships was suggested. 

Lo et al. [42] proposed a basis expansion model for multi-label classification, 

where a basis function is a Label Power set (LP) classifier trained on a random k-label 

set. LP [43] method is a multi-label learning algorithm which basically reduces the 

multi-label classification problem to a single-label multi-class classification problem 

by dealing with each distinct combination of labels in the training set as a different 

class. Random k-Label sets (RAKEL) [44] has introduced to overcome the drawback 

of the LP method. It randomly selects a number of label subsets from the original set 

of labels and then uses LP for training the corresponding multi-label classifiers. 

Experiments were conducted on ten benchmark datasets belonging to different 

domains, including: scene, enron, cal500, major miner, medical bibtex, and four 

versions of delicious (from dlc1 to dlc4). More details on these data sets are available 

at the MULAN library website [45].  
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Qu et al. [46] proposed a Multi-Label classification algorithm based on label-

Specific Features (MLSF). The feature density on the positive and negative instances 

set of each class was first computed and after that, the features of high density from 

the positive and negative instances set of each class were selected. The intersection 

was taken as the label-specific features of the corresponding class. Finally, the multi-

label data was classified on the basis of label-specific features. The classifiers 

induction process of MLSF is similar to the original binary classifiers. Given an 

unlabeled instance xu ∈U , the feature sets for each class label are first rebuild based 

on the label-specific features, and then the corresponding classifier is used to predict 

whether it has the label or not. The proposed MLSF is compared with three multi-

label learning algorithms, including ML-KNN, LIFT, and Rank-SVM. The 

experiments were employed on both regular-scale and large-scale. For the results, 

common evaluation criteria for multi-label classification were used (hamming loss, 

one-error, coverage, and average precision). It is observed, that the performance of 

MLSF is comparable to that of LIFT on the regular-scale data sets and large-scale 

data sets and that MLSF and LIFT algorithms perform significantly better than ML-

KNN and Rank-SVM. 

Kong et al. [47], used the heterogeneous information networks to simplify the 

multi-label classification process. They focused on extracting the relationships among 

different class labels and data samples by mining the linkage structure of 

heterogeneous information networks. These relationships can be then used to 

effectively infer the correlations among different class labels in general, as well as the 

dependencies among the label sets of data examples that are inter-connected in the 

network. The proposed multi-label collective classification algorithm (called PIPL) 
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was tested on a bio-informatic dataset SLAP [48], which is a heterogeneous network 

containing integrated data related to chemical compounds, genes, diseases, side 

effects, pathways etc. 

2.6. Other Classification Methods  

Other existing multi-label classification methods include: 

• BSVM (binary SVM); ECC (multi-label classification + ensemble);  

• PISl (binary decomposition + meta-path based instance correlation):a 

collective classification approach [49], where instance correlations are from 

heterogeneous network;   

• Icml (simple label correlation + instance correlation in homogeneous 

network): this method was proposed by Kong et al. [50] which exploit 

relational features for inter-instance dependencies based on homogeneous 

network for multi-label collective classification;  

• PIml (simple label correlation + meta-path based in- stance correlation): a 

multi-label collective classification approach extended from PIsl [49] by 

adding relational features according to inter- instance-cross-label 

dependencies for multi-label collective classification [50];  

• PIPL (meta-path based instance and label correlation): a method for multi-

label collective classification in heterogeneous information networks. The 

only difference between PIPL and PIml is that PIml does not consider the 

meta-path based label correlation. 
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In order to achieve a reduction in time costs without compromising accuracy, 

Nicolas et al. [51] proposed the MLCBR algorithm which is a system for multi-label 

classification based on Case-Based Reasoning. In their study, they have investigated 

the characteristics of the most popular systems in this area, MLKNN (Multi-Label K 

Nearest Neighbor) and RAKEL (Random L Label sets), where they have observed 

that the main drawback of these specific systems is the time required.  The focus was 

on the retrieval and reuse stages of CBR because these are the features that lead 

toward their objectives, namely the reduction of computational time and improving 

the accuracy. The retrieval stage of Multi-label Case-Based Reasoning Algorithm 

(MLCBR) is based on MLKNN where the K most similar cases to the case study are 

recovered of the case memory. In the reuse phase two approaches were proposed. 

Probabilistic Reuse (PR) is the first option, where the final classification is made 

through a voting process in which all the recovered cases are equally weighted. The 

second option is Probabilistic Reuse, which is based on Experience (PRE). It adds the 

concept of experience to better weight the recovered cases. Results of the proposed 

model were compared with other two competitive multi-label learning systems, 

MLKNN and RAKEL, using seven synthetic dataset and three real-world datasets 

used as benchmark by multi-label classification community (scene, emotions and 

yeast). All the phases of the experimentation process obtain the accuracy values with 

an average of the standard deviation of 10 independent executions of ten-fold cross-

validation process with different randomness seed. 

Experiments show that, a level of accuracy equivalent to that obtained by a 

competent system (MLKNN) and statistically has better results than the benchmark 

(RAKEL). In both comparisons the computational time of the model is lower than the 
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one performed by previous platforms. 

Chain classifiers have been recently proposed to address some problems such 

as, high computational complexity, and ignoring possible dependencies among 

classes. In chain classifier each classifier in the chain learns and predicts the label of 

one class given the attributes and all the predictions of the previous classifiers in the 

chain.  

Sucar et al. [52], introduced a method for chaining Bayesian classifiers that 

combines the strengths of classifier chains and Bayesian networks for multi-label 

classification. A Bayesian network is induced from data to represent the probabilistic 

dependency relationships between classes, and constrain the number of class variables 

used in the chain classifier by considering conditional independence conditions. A 

Bayesian Chain Classifier (BCC) makes two basic assumptions that are, a Bayesian 

network can represent the class dependency structure given the features, and the total 

abduction is approximated by the concatenation of the most probable individual 

classes. A chain classifier can be constructed by inducing first the class that does not 

depend on any other class and then proceed with its children. Thus, the constructed 

steps are: create an order of classes in the chain based on the dependencies between 

classes given the features. These dependencies can be represented as a BN, and 

therefore simpler base classifiers can be created by considering conditional 

independencies between classes. Different Bayesian chain classifiers were tested on 9 

benchmark multi-label data sets; each of them with different dimensions. For 

performance evaluation, several metrics were used to evaluate the performance of 

multi-label classifiers: Mean accuracy over the d class variables (accuracy per label), 

Global accuracy over the d-dimensional class variable (accuracy per example, also 
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called subset zero-one loss), Multi-label accuracy, also called Jaccard measure, and 

finally F-measure. The results showed that a random chain order considering the 

constraints imposed by a Bayesian network with a simple tree-based structure could 

have very competitive results in terms of predictive performance and time complexity 

against related state of the art approaches. 

Cerri et al. [53] investigated a new local-based classification method that 

incrementally trains a Multi-Layer Perceptron (MLP) for each level of the 

classification hierarchy. In a given level, a neural network makes predictions that are 

used as inputs to the neural network responsible for the prediction in the next level.  

Hierarchical Multi-label Classification with Local Multi-Layer Perceptron 

(HMC-LMLP) is a local-based HMC method that associates one Multi-Layer 

Perceptron (MLP) to each classification hierarchical level. This method is basically 

designed to be used in tree-structured hierarchies. The method trains the MLPs 

incrementally on each level, and after the training process of one neural network for a 

specific level, the predictions of this network for the training dataset are used as 

inputs for the training of the next neural network associated with the next hierarchical 

level. This process is continuous until reaching the last level of the hierarchy. 

The experiments used twelve free available [54] datasets associated with the 

task of protein function prediction. Precision–Recall curves (PR-curves) are used as 

the evaluation measure for the methods. 

The proposed method results were compared with the results obtained by one 

state-of-the-art decision tree learner and two other decision-tree based methods, all 

three based on Predictive Clustering Trees (PCT). The experimental data showed that 
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HMC-LMLP can achieve competitive results compared with the global (state-of-the-

art) version of the PCT-based methods, Clus-HMC, regarding AU(𝑃𝑅𝐶). 

Latent Dirichlet allocation (LDA) [55] is a generative probabilistic model. The 

LDA underlying idea is that documents are represented as random mixtures over 

latent topics, and each topic is characterized by a distribution over words. In the text 

classification, a document is classified into two or more classes. As in any 

classification problem, by using LDA module for each class, it could obtain a 

generative model for classification.  LDA model is one of the most successful topic 

discovery models used in the statistical text analysis literatures as it uses plenty of 

words generative approach to automatically find topic for documents.  

Cross-validation [56] is a technique that estimates how a specific classifier 

will generalize when used with a data set that is different than the one that the model 

has trained. It basically partitions the data into n subsets and then uses n-1 of the 

subsets for training the model, and the remaining set for testing the model. This 

procedure will be repeated n times so by this, each of the subsets is used as a testing 

set only once. Then, the results are averaged over the rounds to find the final 

estimation.  

2.7 Performance Evaluation  

In order to evaluate the multi-label classifiers, different methods than the ones 

specific to single-label problems are used because an example can be partially correct 

or incorrect [57].  According to [43], the measures used for evaluation of multi-label 

classification can be organized into two classes: i) bipartition based (includes example 

based measures and label based measures) and ii) ranking based (evaluates measures 
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based on the ground truth of multi-label dataset). The example based measures 

evaluate the bipartitions over all examples of the evaluation dataset, while the label 

based measures divide the evaluation process into evaluations of each label [57]. 

In classical machine learning, the classifiers are usually evaluated by error-rate 

estimates. This error is obtained by comparing the testing examples having a pre-

determined class labels with those class labels recommended by the classifier. This, 

however, is not quite enough when dealing with domains where one class 

significantly outnumbers the other [58]. For instance, if only 1% of the examples are 

positive, then a classifier that labels all examples as negative will achieve 99% 

accuracy.  

For this latter case, other criteria are used, the most popular among them being 

precision and recall. Let us denote by TP the number of true positives, by FN the 

number of false negatives, by FP the number of false positives, and by TN the number 

of true negatives. Precision and recall (which are example based measures) are 

defined as follows: 

𝑃𝑟 =    !"
!"!!"

       (1) 

   𝑅𝑒 =    !"
!"!!"

        (2) 

Precision is the percentage of truly positive examples among those labeled as 

such by the classifier; recall is the percentage of positive examples that have been 

recognized as such (“recalled”) by the classifier. Which of the two is more important 

depends on the given domain. In order to combine them in a single formula, [59] 

proposed F 𝜷 , where the user-specified parameter, 𝛽𝜖 0,∞ , quantifies each 



	
  

27  

	
  

component’s relative importance:  

𝐹𝛽 =    !
!!!   ×  !"  ×  !"
!!  ×  !"!!"

      (3) 

It would be easy to show that 𝛽 > 1 apportions more weight to recall while 𝛽 

< 1 emphasizes precision. Moreover, F  𝛽  converges to recall if   𝛽 → ∞, and to 

precision if 𝛽 = 0. If we do not want to give more weight to either of them, we use the 

neutral 𝛽 = 1: 

𝐹! =   
!  ×!"   ×  !"
!"!!"

      (4) 

 All this, however, applies only to domains where each example is labeled with 

one and only one class.  

F-measure is the harmonic mean between precision and recall [52]:  

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = !
!

!!!!!
!!!!!

!
!!!     (5) 

where 𝑝!and  𝑟! are the precision and recall for 𝐶!. Here, the F-measure is calculated 

per label and then averaged. 

   Yang [60] proposed two methods to average the above metrics over multiple 

classes: (1) macro-averaging, where precision and recall are first computed 

separately for each class and then averaged; and (2) micro-averaging, where 

precision and recall are obtained by summing over all individual decisions. Which of 

the two approaches is better depends on the concrete application. Generally speaking, 

micro-𝐹! weighs the classes by their relative frequency, whereas macro-𝐹! gives equal 

weight to each class. The formulas are summarized in Table 2.1, where 𝑃𝑟!, 𝑅𝑒!, and 
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F1.j , stand for precision, recall, and F1 for the jth class (from l classes).  

Table 2.1 Macro-averaging and micro-averaging of the performance criteria on the 

data set with l classes [60]. 

  

 Hamming loss (an example based measure) [61] evaluates how many times an 

example-label pair is misclassified, i.e., label not belonging to the example is 

predicted or a label belonging to the example is not predicted. The smaller the value 

of hamming_loss(h), the better the performance. The performance is perfect when 

hamming_loss(h) = 0. This metric is defined as:  

ℎ𝑎𝑚𝑚𝑖𝑛𝑔!"## ! = !
!

!
!

!
!!! ℎ 𝑥! ∆𝑦!    (6) 

where Δ stands for the symmetric difference between the two sets, N is the number of 

examples and Q is the total number of possible class labels. Yi denotes the set of true 

labels of examples xi and h(xi) denotes the set of predicted labels for the same 

examples.   
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 The ranking loss [62] evaluates the average fraction of label pairs that are 

disordered for the example. The metric is defined as:  

𝑅𝑎𝑛𝑘𝑖𝑛𝑔  𝑙𝑜𝑠𝑠(ℎ, 𝑥,𝑃!) =   
!,!! ∈  !!×  !! ! ! !! !! |

!! |!!|
   (7) 

where h is a ranking model, x is a given instance, P the set of relevant labels, 𝜏  (𝜆!) 

denotes the position of  𝜆!    in the predicted ranking , 𝜏!!(𝑖)  the label 𝜆  having 

assigned position i. 

Set error [42] evaluates a multi-label prediction as a whole. It evaluates the 

percentage of predicted label sets that do not exactly match the true label sets. 

The one-error [62] evaluates the performance from a restricted perspective, 

since it only determines when the top-ranked label is relevant. In this case, the best 

performance is reached when one-error is equal to 0, the smaller the value of the 

error, the better the classification algorithm. 

𝑂𝑛𝑒  𝑒𝑟𝑟𝑜𝑟 ℎ, 𝑥,𝑃! = 1  𝑖𝑓  𝜏!! 1 ∉   𝑃!!
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

    (8) 

where h is a ranking model, x is a given instance,  𝜏  (𝜆!) denotes the position of  𝜆!   in 

the predicted ranking , 𝜏!!(𝑖) the label 𝜆 having assigned position i, and P the set of 

relevant labels. 

Average precision [42] evaluates, for each relevant label, the percentage of 

relevant labels among all labels that ranked above it. It can evaluate the algorithm as a 

whole and, unlike the case if one-error, the higher its value, the higher the 

performance is. 

The coverage [63] evaluates on average how many steps are needed, to move 
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down the label list in order to cover all the proper labels of the example. Along with 

one-error and average precision, this measure metric belongs to the ranking-based 

measure class. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ℎ =    !
!
   max 𝑟𝑎𝑛𝑘!

𝑦 ∈ 𝑌!
!
!!! 𝑥! ,𝑦 − 1   (9) 

Here, h(xi) returns a set of proper labels of xi; h(xi,y) returns a real-value indicating 

the confidence for y to be a proper label of xi; rankh(xi,y) returns the rank of y 

derived from h(xi,y). 

Another error that can be used for multi-label classification is the Mean 

accuracy over the d class variables (accuracy per label) defined by Eq. 10 and Global 

accuracy over the d-dimensional class variable (accuracy per example, also called 

subset zero-one loss) defined by Eq. 11 [52].  

  𝑀 − 𝐴𝑐𝑐 = !
!

𝐴𝑐𝑐! =
!
!

!
!

𝛿(𝑐!!" , 𝑐!")!
!!!

!
!!!

!
!!!             (10) 

where 𝛿 𝑐!!" , 𝑐!" = 1 if 𝑐!!"= 𝑐!" and 0 otherwise, and 𝑐!!" denotes the Cj class value 

outputted by the model for instance i and 𝑐!" is its true value. 

  𝐺 − 𝐴𝑐𝑐 = !
!

𝛿!
!!! (𝑐!! , 𝑐!)                (11) 

where 𝛿  (𝑐!! , 𝑐!)  = 1 if 𝑐!! = 𝑐!  and 0 otherwise. Therefore, we call for a total 

coincidence on all the components of the vector of predicted classes 𝑐!! and the vector 

of real classes 𝑐! 

In [64], a multi-label accuracy measure called Jaccard measure was defined: 
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𝑀𝐿 − 𝐴𝑐𝑐 = !
!
   !!∧!!!

!!∨!!!
!
!!!                (12) 

where in the numerator, we count the number of coincidences of the two vectors (real 

and predicted), and in the denominator, we count the number of labels covered by 

some of both vectors. 

In case of decision-tree methods, in order to obtain the final predictions, a 

threshold value is employed. When classifying an example, if the corresponding 

output value for a given class is equal or larger than the threshold, the class is 

assigned to the example. Otherwise, it is not assigned to the example. Thus, the 

choice of the “optimal” threshold value is a difficult task, because low threshold 

values lead to many classes being assigned to the examples, resulting in high recall 

and low precision. Moreover, larger threshold values lead to very few examples being 

classified, resulting in high precision and low recall. In order to deal with this 

problem, Precision–Recall curves (PR-curves) are used as the evaluation measure 

[53]. To obtain a PR-curve for a given classification method are applied to the outputs 

of the methods, and thus different values of precision and recall are obtained for each 

threshold. Each threshold represents a point within the PR-space. The union of these 

points forms a PR-curve, and then the area below the curve (AUPRC) is calculated. 

Different methods can be compared based on their areas below the PR-curves. 

a) Area under the average PR-curve: 

Given a threshold value, a precision–recall point 𝑃𝑟𝑒𝑐,𝑅𝑒𝑐   in the PR-space can be 

obtained using the following equations: 

𝑃𝑟𝑒𝑐 =    !"!!
!"!!! !"!!

               (13) 
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𝑅𝑒𝑐 =    !"!!
!"!!! !"!!

               (14) 

where i ranges over all available classes, corresponding to the micro-average of 

precision and recall. 

b) Weighted average of the areas under the individual PR-curves: 

In order to calculate the weighted average of the areas under the individual PR-

curves, we first calculate the AUPRCi for each class separately, with i ranging from 1 

to |C|. Afterwards, we obtain the 𝐴𝑈𝑃𝑅𝐶!using the following equation:  

𝐴𝑈𝑃𝑅𝐶! = 𝑤! .𝐴𝑈𝑃𝑅𝐶!!               (15) 

where 𝑤! is used to weight the contribution of a class according to its frequency.
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Methodology 

 

Digital libraries provide a huge range of information including text, movies, 

speeches, images, photos, books and others. This digital data provides large 

collections of content which naturally leads to the need of powerful tools that 

efficiently process, analyze, navigate, and browse the digital data [65]. Therefore, in 

this work, different data sets from books digital libraries and other contents were 

used. There are many digital libraries available online such as, Internet archive [66], 

Google books [67], Open library [68], The New York public library [69], and Wiley 

online library [70], Routers-21578 [71].  The Wiley Online Library [70] hosts the 

world's broadest and deepest multidisciplinary collection of online resources covering 

life, health and physical sciences, social science, and the humanities. Routers-21578 

[71] is a collection appeared on the Reuters newswire in 1987.  

 From the available sources Wiley Online Library [70], Routers-21578 text 

categorization collection data set [71], and the 20 Newsgroups data set [72] were 

chosen for the conducted experiments. Wiley Online Library hosts the world's 

broadest and deepest multidisciplinary collection of online resources. It delivers 

seamless integrated access to over 4 million articles in 1500 journals, over 14,000 

online books, and hundreds of reference works, laboratory protocols and databases.  

The documents in Routers-21578 [71] are organized and indexed with 

categories by personnel from Reuters Ltd. In 1990, Reuters and CGI made the 

documents available for research purposes to the Information Retrieval Laboratory of 

the Computer and Information Science Department at the University of Massachusetts 
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at Amherst. There are multiple categories, and there are relationships among the 

categories, therefore are many possible feature sets can be extracted from the text  

The 20 Newsgroups data set [72] is a collection of approximately 20,000 

newsgroup documents, partitioned across 20 different newsgroups, each 

corresponding to a different topic. It has become a popular data set for experiments in 

text applications of machine learning techniques, such as text classification and text 

clustering. 

Since the data set that is provided by the digital library is considered as raw 

data, it may contain nominal attributes (un-necessary). Nominal attributes are defined 

by providing a <nominal-specification> listing the possible values: {the, for, in, on, 

edition, processes, systems...}. Also, a raw data set may contain many values that may 

be missing, so it is necessary to do some pre-processing. Once pre-processing was 

finished, a proprietary algorithm for multi-label class was implemented and compared 

with some existing algorithms.  

3.1. Data pre-processing: 

This phase consists of the following: i) data cleaning; ii) feature extraction; 

and iii) nominal to numerical conversion.  

3.1.1 Data cleaning: 

Removing un-necessary and meaningless words such as “introduction”, 

“handbook”, “edition” etc., is done in this stage. Its role is to reduce the dimensions of 

the dataset and to eliminate the elements that can create errors in the classification 

algorithm. 
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Meaningless words with very high frequency are considered as stop words 

[73], and these words are added to the Stop Word list. Removing such words will 

result in better results and it will not affect the classification efficiency at the same 

time. The Stop Word list are shown in Table 3.1. 

Table 3.1: The list of Stop Word used in the classification procedure 

a couldn't his or third 

about cry how other this 

above de however others those 

across describe hundred otherwise though 

after detail i our three 

afterwards do ie ours through 

again done if ourselves throughout 

against down in out thru 

all due inc over thus 

almost during indeed own to 

alone each interest part together 

along eg into per too 

already eight is perhaps top 
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also either it please toward 

although eleven its put towards 

always else itself rather twelve 

am elsewhere keep are twenty 

among empty last same two 

amongst enough latter see un 

amongst etc latterly seem under 

amount even least seemed until 

an ever less seeming up 

and every ltd seems upon 

another everyone made serious us 

any everything many several very 

anyhow everywhere may she via 

anyone except me should was 

anything few meanwhile show we 

anyway fifteen might side well 

anywhere fifty mill since were 
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are fill mine sincere what 

around find more six whatever 

as fire moreover sixty when 

at first most so whence 

back five mostly some whenever 

be for move somehow where 

became former much someone whereafter 

because formerly must something whereas 

become forty my sometime whereby 

becomes found myself sometimes wherein 

becoming four name somewhere whereupon 

been from namely still wherever 

before front neither such whether 

beforehand full never system which 

behind further nevertheless take while 

being get next ten whither 

below give nine than who 
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beside go no that whoever 

besides had nobody the whole 

between has none their whom 

beyond Hasn't noone them whose 

bill have nor themselves why 

both he not then will 

bottom hence nothing thence with 

but her now there within 

by here nowhere thereafter without 

call hereafter of thereby would 

can hereby off therefore yet 

cannot herein often therein you 

cant hereupon on thereupon your 

co hers once these yours 

computer herself one they yourself 

con him only thick yourselves 

could himself onto thin  
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In data cleaning, the input file is parsed line by line and each line is being split 

into words by space character as a delimiter. Then each is getting its stem using the 

Porter stemming algorithm [74].  

The Porter stemming algorithm is a process for removing the commoner 

morphological and inflexional endings from words in English. It is mainly used as 

part of the normalization process that is usually done during processing information 

retrieval systems. After the stemming process, each root is being searched in the list 

of unwanted words and if that root exists in the unwanted words file, then the word 

it's derivatives will be deleted from the input file. Finally, the line that has unwanted 

words eliminated is reconstructed and pushed in a new file (Intermediate). The 

scheme of this algorithm is presented in Figure 3.1. 
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Figure 3.1: Flowchart of the Porter Stemming algorithm [81] 

3.1.2 Feature extraction: 

Transforming the input data into the set of features is called feature extraction. 

The features have to be chosen carefully. By that, the features set will extract the 
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relevant information from the input data in order to perform the desired task using this 

reduced representation instead of the full size input [75].  

In features extraction, the process starts by reading the intermediate file line 

by line. Then, we find the stem of each word by searching in the stem file. If the stem 

is found then the word is ignored and the process forwards to the next word. If that 

stem is not found, then the count of features is increased by one and that stem is 

added into the feature set. After that, that original word of that stem is written in the 

output file.  In order to find the relationship between the number of features and 

number of example, the feature in this step are counted.   

3.1.3 Nominal-to-numerical conversion:   

To make the classification less computational expensive, the classes are 

numbered and their corresponding meaning are defined. Also the extracted features 

are transformed into numerical features usable for machine learning. 

 Figure 3.2 shows an example of the pre-processing phases, where un-

necessary word (Handbook) is removed in the data cleaning and the remaining words 

are extracted as representing the features. Figure 3.3 provides sample of pre-processed 

training examples where the numbers before the “:” represents the book title features 

and the numbers after the “:” represents the three level class representation 

corresponding to the book titles.  
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Figure 3.2: Pre-Processing phases on an example 

 

 

Figure 3.3: Sample of pre-processed training examples 
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3.2 The proposed algorithm 

Once data pre-processing is completed, the data is stored in a pre-processed 

file to be handled later as clean data. The proposed classifiers read from this data set 

as follow: First, the system reads a set of the data set X. Then, the system reads 

another set of data, let’s call it Z. This data is used for testing. After the classification 

process is done, the error rate and the classification accuracy will be observed.  

Let's call the set of misclassified examples Y. Then classifier must be trained 

again. Because Y is smaller than Z a number of examples (E) must be added, where E 

= Z - Y and the new training set is N where N = E + Y. The following example 

clarifies how (N) is computed. If we have X=1000 examples for training, Z=1000 

examples for testing, and we came out with Y=200 misclassified examples. So, we 

need to include Y in the next training session. But because Y < Z, then we must to 

add new set of data (E) where E = Z - Y and then we add Y to E to form (N).   

The system reads another set of data, let's call it (V), and this is going to be 

used for testing, so every example in the testing iteration i ∈ V!.  

For every classification iteration, a training session will start again and a new 

testing session V! will also go through the classifier. In Figure 3.4 a simplified schema 

of the proposed approach is presented. 
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Figure 3.4: Methodology work flow 

A common approach for building a reliable classifier is to split a data set in to a 

training set and an independent test set, where the training set is used to develop the 

classifier and the testing set is used to evaluate its performance. The common used 

strategy is allocating 2/3rd of cases for training is nearly optimal for reasonable sized 

data sets (n≥ 100) with strong signals [76]. According to this principle the workflow 

is as following: 

• Once the data it is cleaned, the algorithm reads it. 

• The algorithm trains the classifier by assigning the feature numbers with every class 

in the classification tree.  

For example if data has a set of features (Computer = 1, Science = 2, 

Machine = 3, Learning = 4, Algorithm = 5, Engineering = 6, Biology = 7, 

Chemistry = 8), these features are assigned to each class according to a pre-

designed classification tree: 
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Class 1, features [1, 2, 3, 5, 8, 10] 

Class 2, features [1, 5, 8] 

Class 3, features [5, 8, 10]  

and so on. 

 Then, the classification tree might look as Figure 3.5. 

 

Figure 3.5: Classification tree 

• Once the features are assigned to classes, the testing set is introduced, every 

word in the title being assigned to a class. The word might be assigned to 

more than one class, but only to the ones belonging to the same grandparent. 

Once a word cannot be classified in any class, it means, the feature of the 

word is new, and the classifier needs to be re-trained. The error rate is 

calculated if a word feature was miscounted or if a word was classified in a 

wrong class. Macro- and Micro- averaging are used to calculate the error rate 

in case a word was classified into a wrong class.  
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  The pseudo-code of the proposed algorithm is the following: 

TitleList = Import_Titels_List( ) 

CategoriesList  = Import_Categories_List( ) 

StemList = Import_Words_List( ) 

ErrorsCounter = 0 

WordsCounter = 0 

For each title in TitleList 

       WordsIn Title = extractWordsFromTitles(title) 

       WordsCounter = WordsCounter + NumberOfElement(WordsIn Title) 

       TitleCategories(title) = emplylist( ) 

               for each wordintitle in WordsInTitle 

                             for each stem in StemList 

                                  StemIsFound = false 

                                  if StemOf (wordintiltle) == stem 

                  TitleCategories(titles) = union( TitleCategories(title), CategoriesOfStem(stem)) 

                                      StemIsFound = true                                                  

                                      GoToNextWordIntitle( )                

                                  end 

                             end 

                            if StemIsFound == false 

OutputWarning(“The word”wordintitle “in the title”title “has not  a matching in the list of 
stems”) 

                                            ErrorsCounter = ErrorsCounter + 1 

                          end 

              end 

end 

ErrorRate = ErrorCounter / WordsCounter 

Output(“The error rate is” ErrorRate) 
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3.3. Complexity analysis 

To analyze the complexity of the algorithm the following symbols are used: 

n : number of titles to be analyzed  

m : number of stems present in the database 

t : number of categories per word (mean value) 

p : number of words per title (mean value) 

q : number of characters per word (mean value) 

w : total number of categories 

  The overall number of instructions is  

  𝑓 𝑛,𝑚, 𝑡,𝑝, 𝑞 =   𝑛𝑝𝑞 +𝑚𝑝 + 𝑛 𝑝𝑚 𝑡 + 𝑡 + 𝑞 + 𝑝 + 𝑝𝑞           (16) 

  That is in the expanded form 

  𝑓 𝑛,𝑚, 𝑡,𝑝, 𝑞 =   𝑚𝑛𝑝𝑞 + 2𝑚𝑛𝑝𝑡 +𝑚𝑝 + 𝑛𝑝𝑞 + 𝑝𝑞 + 𝑝            (17) 

  Analyzing the expression above we can note that the increasing the size of 

inputs the dominants terms are 𝑚𝑛𝑝𝑞 and 2𝑚𝑛𝑝𝑡. Then, considering that the number 

of categories per word (𝑡) is generally lower than the number of characters per word 

(𝑞) the time-complexity of the algorithm is 𝑂(𝑚𝑛𝑝𝑞). 

  Considering that the number of word per title (𝑝), the number of characters 
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(𝑞) and the number of categories per word (𝑡) does not increase by increasing the 

input size (as they mainly depend on the language the words belong) they can be 

treated as constant (the medium value is considered) and can be neglected in the 

evaluation of the time - complexity of the algorithm. 

  In the end, the time complexity of the algorithm result using the big-𝑂  

notation.  

      𝑂(𝑚𝑛)               (18) 

The space complexity of the algorithm is calculated considering the bytes of 

memory needed for the execution of the algorithm. Therefore, the number of bytes is 

defined by Equation 19, described in its extended form by Equation 20: 

   𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 =   𝑛𝑝𝑞 +𝑚 𝑝 + 𝑞 + 𝑝𝑞 + 𝑤𝑞            (19) 

   𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 =   𝑛𝑝𝑞 +𝑚𝑝 +𝑚𝑞 + 𝑝𝑞 + 𝑤𝑞            (20) 

Considering that the number of categories (𝑤) is generally lower than the 

number of titles to be analyzed (𝑛) and lower than the number of stems (𝑚), in the 

asymptotic analysis the last term (𝑤𝑞) can be neglected. In these conditions, the space 

required when increasing n and q can be approximated as: 

   𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 =   𝑛𝑝𝑞 +𝑚𝑝 +𝑚𝑞              (21) 

Considering that the number of words per title 𝑝 and the number of characters 

per word 𝑞 do not increase increasing the input size (as mentioned in the previous 

paragraph, they mainly depend on the language used), the space required can be 

approximated to: 
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  𝑓 𝑛,𝑝, 𝑞,𝑚,𝑤 =   𝑛𝑝𝑞 +𝑚𝑝 +𝑚𝑞 = 𝑛𝑝𝑞 +𝑚(𝑝 + 𝑞)             (22) 

In the end, the space complexity of the algorithm result using the big-𝑂 

notation 

      𝑂(𝑛 +𝑚)               (23) 

3.4. Case studies 

  The same experiment is conducted for full domain, and sub-domains of the 

library collections which are shown in Figure 3.6. 

 

Figure 3.6: Books domain and sub-domains 

  After finishing with the books domain, the algorithm is applied to another 

domain such as animal domain (Figure 3.7). 
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Figure 3.7: Representing animal domain and sub-domains 

In order to assess the performance of the proposed algorithm, a comparison 

with Naïve Bayes and K-Nearest Neighborhood is performed.  

 

3.4.1. Case study one (Wiley online library) 

The data set of the first case study is represented by the Willey online library 

[70]. It has collection of books (examples) described by different attributes. These 

books were collected from different fields and disciplines. The characteristics of this 

database are the following:   

• Dataset name: Wiley online library [57]  

• Number of attributes: 5888 

• Number of examples: 8842 

• Number of classes: 64 



	
  

51  

	
  

• Number of hierarchical levels: 3 

The data set already contains nominal attributes, many values were missing. 

Therefore, pre-processing was necessary. According to the workflow of the proposed 

algorithm, before training and testing, a data cleaning step and nominal to numerical 

conversion steps are performed.  

In the data cleaning step, rare classes or classes that may have a representation 

of less than 1% of the data set will be ignored as 1% is really a small number of 

examples. In case the data set is a large one, 1% might be taken into consideration in 

other data sets. Some examples of books titles that might be ignored due to the low 

class representation are: “It Happened One Night”, “Top Hat”, “Hairspray”, “The Act 

of Remembering”, and “Women at the Top”. 

In the nominal to numerical conversion, numbers are manually assign to each 

class as those classes are already induced and defined to their corresponding meaning. 

Also, the transformation of the extracted features into numerical features is useful for 

machine learning since its easy to handle when coding. For example if we have the 

word “science = 1” in the feature set and we got a book titled with “computer science 

algorithms”, the word “computer” will be assigned to 2, and the word “algorithms” 

will be assigned to 3 as we already have “science” assigned to 1. So, the example 

representation will be:  “2,1,3.” 

The data set has thousands of examples. To insure precise performance 

evaluation, a 5-fold cross validation was used. The training examples are described 

by thousands of attributes, thus it becomes easy to classify discriminant classes, but 

that means that a large number of examples is required in this case. 
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This data is cleaned and all un-necessary words and stop words are removed. 

The result of this phase is shown in table 3.2. 

 

Table 3.2: Sample of cleaned books titles 

Mass Spectrometry  

Ray Powder Diffractometry  

Ray Fluorescence Spectrometry  

Reflection ATR Spectroscopy  

HPLC  

Electrospray MALDI Mass Spectrometry Biological  

Forensic Chemistry  

Chiroptical Spectroscopy Simulations  

Chiroptical Spectroscopy Stereochemical Biomolecules  

 Chemistry  

Atomic Microscopy  

Condensed Molecular Spectroscopy Photophysics  

 

Thus, using stemming, every word is associated with its family. Consequently, 

words like computer, computing, computers, and compute will have only one stem 

number (Table 3.3).  
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Table 3.3: Sample of the words and their associated stem numbers. 

Word Stem number Word Stem number 

mass 1 Biological  14 

Spectrometry  2 Chemistry 15 

ray 3 Chiroptical  16 

powder 4 Simulations  17 

Diffractometry  5 Stereochemical 18 

Fluorescence 6 Biomolecules  19 

Reflection 7 Atomic 20 

ATR 8 Microscopy  21 

Spectroscopy 9 Condensed  22 

HPLC  10 Molecular 23 

Electrospray 11 Photophysics  24 

Forensic 12 ADME 25 

 MALDI 13 Drug  26 

 

We select 𝑥!, 𝑥!… . 𝑥!   ∈ 𝑋, and 𝑋  is a set of examples that consists of 𝑛 

examples for training. In the training stage, the features are manually assign with each 

class. This is called a class feature vector. Once this stage is achieved, the classifier is 

trained and becomes ready for testing.  

For this case study, the scope was to test if the classifier can be trained and 

what would be the error rate. The dataset considered is represented by the entire 
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book domain [70]. The entire data set including all major classes and sub-classes 

was used. The main classes are: Applied Science, Engineering Science, Health and 

Social Sciences. 

The data set was divided into training and testing examples each training set 

having 200 examples and each testing 200 examples. For the training set, the 

examples are manually classified and the class label is updated with every example. 

Figure 3.8 shows the feature extraction workflow. 
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Figure 3.8: Feature extraction workflow 

 

3.4.2. Case study two (Engineering domain) 

 The structure of the engineering domain is presented in Table 3.4.  

Start Read an 
example 

New 
feature 

No 

Yes 

Give the example 
a new feature 
number value 

Manually find 
the class(es) 

Class is 
found 

No 
Ignore the 
example 

Yes 

Add the feature 
number to the 

class 

End 
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Table 3.4: Structure of the Engineering domain 

Engineering 

science 
Engineering 

Chemical Engineering  

Civil & Construction Engineering 

Communication Technology & Networks 

Computer Science & Information Technology 

Electrical & Electronics Engineering 

Industrial Engineering 

Mechanical Engineering 

Mobile & Wireless Communications 

 

Very similar experiment setup will be used as the one used in case study one, but the 

data is different. In this case, we will only apply the engineering domain. The 

purpose is to observe if there is any change in the result compared with case one.  

 

3.4.3 Case study three (Social Sciences and Humanities domain) 

In this case, the same data set as in the case study two was used [70]. However, 

only the social sciences and humanities books collection domain was studied. The 

structure of the database is presented in Table 3.5. 
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Table 3.5: Structure of the Social Sciences and Humanities domain 

 Social 

Sciences 

Social Sciences 

& Humanities 

Ancient  History & Classical Studies 

Anthropology & Archaeology 

Architecture & Planning 

Business, Economics, Finance, Accounting 

History 

Language & Linguistics 

Literature 

Philosophy 

Public Administration & Management 

Religion & Theology 

Sociology, Media, Communications, & Cultural 

Studies 

 

 

3.4.4 Case study four (Health science domain) 

The Health Science domain has a number of 1300 examples from the same 

data set that we are using [70]. The structure of this domain is presented in Table 3.6.  

In this experiment, the scope was to explore what happens (in terms of 

percentages of obtaining new features in every news groups) if we introduce sequence 

of examples in groups of 100-200 examples for each group.  
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Table 3.6: Structure of the Health Science domain 

Health Health Sciences 

Allergy & Respiratory Medicine 

Anatomy & Physiology 

Cardiology & Cardiovascular Medicine 

Clinical Psychology 

Dentistry 

Dermatology 

Endocrinology & Diabetes 

Gastroenterology & Hepatology 

Hematology 

Neurology 

Neuroscience 

Nursing 

Obstetrics & Gynecology 

Oncology & Radiotherapy 

Pharmacology 

Psychiatry 

Psychology 

Public Health/General 

Surgery 

Veterinary Medicine 
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3.4.5 Case study five (Physical Science domain) 

This domain has 1200 examples. The structure of the Applied Science area 

(including the Physical Sciences domain) is presented in Table 3.7. Similarly to the 

case study, in this experiment, the scope was to explore that happens (in terms of 

percentages of obtaining new features in every news groups) if we introduce sequence 

of examples in groups of 100-200 examples for each group. Distinctively from case 

study four, different domains were used. Therefore, the experiment will show (when 

the domain is changed), if there will be the same percentage of getting new features 

with every new group or no. 

Table 3.7: Structure of the Applied Science area 

Applied 

science 

Chemistry 

Analytical Chemistry 

Biochemistry 

Environmental Chemistry 

General & Physical Chemistry 

Industrial Chemistry 

Inorganic Chemistry 

Organic Chemistry & Catalysis 

Pharmaceutical & Medicinal Chemistry 

Physical 

Sciences 

Energy 

Food Science & Technology 

Materials Science 
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Mathematics 

Nanotechnology 

Physics 

Polymer Science & Technology 

Statistics 

 

3.4.6 Case study six (Analytical Chemistry domain) 

The Analytical Chemistry domain has a number of 250 examples. Similar to 

the previous two case studies (four and five), in this experiment, was explored the 

situation in which sequence of examples in groups of 50-100 examples for each group 

are introduced. 

3.4.7 Case study seven (Routers-21578) 

In this case the Routers-21578 data set [71] is used. It is represented by a 

collection of documents (news articles), and the documents are classified into classes. 

In this experiment, the scope was to use the whole text in the document, and not only 

the title of each document. Although this approach (due to the dimensionality) may 

require a longer computational time, it will show if the number of features to number 

of examples would have a direct impact on the error rate. 

3.4.8 Case study eight (20 newsgroup) 

In this experiment, the “20 newsgroup” dataset was employed. It has about 

19,000 documents, the full document text, not only the titles being used for 

classification. Section 4.1.10 discuss the result of this experiment in details. Very 
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similar to the previous experiment "case study seven," in this experiment we want to 

use the whole text in the document, and not only the titles of each documents, the 

difference being that the algorithm is run on a different data set. 

3.4.9 Case study nine 

In this experiment, we are looking at the error rate in general. The scope was 

to check if all class hierarchy has the same error rate or different error rate. In 

addition, the distribution of the error rate over class hierarchy was shown. In other 

words, it was tested if the error rate in the parents classes are similar or different than 

the error rate in the children or grandchildren classes. Therefore, two cases were 

considered: i) testing the error rate at a specific error rate during the training-testing 

phase; and ii) taking the readings for the whole experiment from start to finish. 

3.5 Existing algorithms 

In order to assess the performance of the proposed algorithm, a series of 

existing algorithms (Naïve Bayes and K-NN) were implemented and compared in 

terms of performance and efficiency. 

 

       3.5.1 Naïve Bayes algorithm  

This method is based on the Bayes theorem and is a simple probabilistic 

classifier. It is suited for high dimensionality inputs, having good performance. If it is 

used with text classification, we need to calculate the error rate on the same data set 

and compare it with our suggested algorithm. 
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3.5.2 K-NN algorithm  

The very popular K-NN is compared in this part with our algorithm.
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Results 

 

In this chapter, the results of the simulations performed with the proposed 

algorithm and the algorithms chosen for comparison are presented and discussed. 

Several experiments were conducted on real world data sets from different fields 

including library collections [70], Reuters- 21578 [71], and 20 Newsgroup [72] data 

sets. The final goal was to correctly classify a library collection into classes where the 

examples (books) are classified into classes and the classes are hierarchically ordered.  

4.1 The proposed algorithm 

4.1.1 Feature extraction 

If a new word is received and the word is not found in any class vector, then 

this is considered as an error. The follow pseudo code calculates the error rate and do 

the training and testing steps. 

Data = importdata('Data.xlsx'); // n*p*q + m*(p+[q]) 

errcnt = 0; //1 

wrdscnt = 0; //1 

for i=1:length(Data.Titles)  

WordsInTitle=regexp(Data.Titles{i}, ' ', 'split'); //p*q 
WordsInTitle=setdiff(WordsInTitle,{''});  

wrdscnt = wrdscnt + length(WordsInTitle); 

TitleCategories{i}=[]; //0 

for j=1:length(WordsInTitle)  

for k=1:length(Data.Words) 
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found=0; 
match=strncmpi(WordsInTitle{j},Data.Words{k},length(Data.Words
{k}));  

if match==1 

TitleCategories{i}=union(TitleCategories{i},Data.Words( 

k,2:end)); //w*q 
TitleCategories{i}=setdiff(TitleCategories{i},{''});  

found=1;  

break; 

end  

end 

if found==0  

warning(['The word ',WordsInTitle{j},' in the title ',num2str(i),' has not a  

  matching in the list of stems']) //1  

errcnt = errcnt +1; //1 

end  

end 

end 

errrate = errcnt / wrdscnt; // 1 

disp(['The error rate is ', num2str(errrate*100) ,' %']); 

 

4.1.2 5-fold cross validation  

Along with this approach, the 5-fold cross validation procedure was also 

tested. Let’s consider a scenario in which 250 examples are classified in order to 

estimate the error rate. This classification is performed by taking 50 examples at a 

time. The first iteration contained a number of 87 features in the feature set. In the 

second iteration, 65 new features were obtained. Having new features that do not exist 

in the features set will result in examples miss-classification, and this occurs during 
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every iteration. Therefore, the new features were added manually to the feature set, so 

these new features will be assigned automatically in the feature set in the following 

classification iteration. By this, it can be noticed that the error rate is dropping with 

each iteration (Figure 4.1).  

 

Figure 4.1: 5 fold – cross validation 

 

4.1.3 Case study one (Wiley online library) 

In order to compute the error rate for this dataset, the macro-micro averaging 

were used. When multiple class labels are to be retrieved, averaging the evaluation 

measures can give a view on the general results. For example, consider a binary 

evaluation measure B(TP,TN,FP,FN) that is calculated based on the number of true 

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), and 

2 labels 𝑐! and 𝑐!. In this case, the metrics are the ones presented Table 4.1. 
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Table 4.1: Macro-Micro averaging measures 

Label TP FP FN Precision Recall 

𝒄𝟏 20 20 20 0.5 0.5 

𝒄𝟐 80 20 20 0.8 0.8 

Total 100 40 40  

Macro-averaged  = 0.65 

Micro-averaged   = 0.71 

 

Figure 4.2 shows the result of the experiment with a very noisy training, until 

1000 examples are reached. At this point, the error rate starts to drop below 80%. The 

learning curve shows an error rate of 40% when almost 4000 examples are used.  We 

expect that the curve will keep improving and the error rate keeps dropping as more 

examples are added. This experiment was conducted on the whole books domain. The 

number of attributes used in this experiment was 8555.  

Figure 4.2 shows the result of applying the proposed algorithm, where every 

class is labeled with the features that best describe the class. These all the examples 

were classified to all classes that may have their features as shown in Figure 3.5 
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Figure 4.2: Books full domain error rate. 

This algorithm works as follow: 

• Read a data set. 

• Perform data pre-processing phase. 

• Extract the features, which are the attributes. If the feature is exist in any class, 

then the word is classified in to that class, else, if it does not have a class, then 

it is considered as an error and we classify it manually.  

 

4.1.4 Case study two (Engineering domain) 

With this sub-domain, the error rate drop below 20% with only 400 examples. 

This can be explained by the fact that the number of attributes associated with this 

domain is very small and equals to 1831 for the engineering domain. The error rate 
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was calculated using the Macro-Micro averaging metric. Figure 4.3 shows the result 

of this experiment.  

 

Figure 4.3: Engineering domain error rate 

 

4.1.5 Case study three (Social sciences and humanities domain) 

Figure 4.4 shows the output of this case study. As observed, the error descends 

rapidly due to the fewer number of features. In this experiment, we also used the 

Macro-Micro averaging metric to calculate the error rate. 
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Figure 4.4: Social sciences and Humanities error rate. 

 

4.1.6 Case study four (Health domain) 

Considering health sciences domain, which have a number of 1300 examples 

and taking 100 examples on each iteration, the result shows an obvious decrease in 

the number of features whenever new set of examples are added (Figure 4.5).  

The Figure 4.5 shows that, the first 100 examples has 154 new features then 

the second 100, shows 152 new features, and the third 100, shows another new 

features of 125, and so on. 
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Figure 4.5: First level classification 

4.1.7 Case study five (Physical sciences domain) 

Considering physical sciences domain which has a number of 1200 examples 

and taking 100 examples on each iteration, the result shows an obvious decrease in 

the number of features (Figure 4.6.)  

The Figure 4.6 shows that, the first 100 examples have 87 new features then 

the second 100 have 65 new features, and the third 100 have 45 new features, and so 

on. 

 



	
  

71 	
  

	
  

 

Figure 4.8: Second level classification 

4.1.8 Case study six (Analytical chemistry domain)  

Considering analytical chemistry domain which has a number of 250 

examples and taking 50 examples on each iteration, the results show an obvious 

decrease in the number of features (Figure 4.7) 

 

Figure 4.7: Third level classification 
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4.1.9 Case study seven (Routers- 21578) 

The results of the previous case studies showed that a book collection could be 

trained and the error rate can be reduced if more examples are added. The error rate in 

this case was calculated using the hamming loss [61]. Figure 4.8 shows the result of 

the experiment. As it can be observed, the error rate is very low starting at ≈ 1.5% to 

less than 0.5%. 

 

Figure 4.8: Routers-21578 data set error rate 

 

4.1.10 Case study eight (20 newsgroup) 

In this experiment, we used another popular algorithm in documents 

classification called Term Frequency Inverse Document Frequency (TF-IDF) [8] and 

the data set “20 newsgroup” was used. As explained in section 3.4.8 the data set has 

about 19,000 documents. It is expressed in terms of the document-term matrix. Rows 

are represented by the document examples, and columns represent words. A matrix 

entry (i,j) represents the frequency of occurrence of a word j in a document i. Word 
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frequencies for about 60,000 words are specified for each document. The item (1,1) 

means document #1, word #1, and the #4 means word#1 has frequency = 4 in 

document #1 and so on. 

In an attempt to reduce the dimensionality of dataset, the following steps were 

preformed: 

• Removing features that do not help in discriminating between class i.e., words 

like ’a’, ‘the’ that appear in all documents. 

• Using Principle Component Analysis PCA [39] for dimensionality reduction 

Words with high Inverse Document Frequency (IDF) counts are removed, where 

IDF represents the ratio of the number of documents in which a particular word 

appears, to the total number of documents. A high value indicates that the word is 

present in most of the documents across classes, and hence does not help much in 

discriminating between the classes. But it was noticed that we were left with a large 

number of words even after removing the ones with counts above a certain threshold. 

Since discarding information can affect classifier performance later and setting too 

low threshold is not a good thing, new alternatives were searched. 

4.1.11 Case study nine (The distribution of the error rate) 

Figure 4.9 shows the error distributions over the class hierarchy. It shows that 

as we go down in the hierarchy the error increases. It was taken at error rate = 20 and 

as it can be observed, the error rate is 20% * 9.1 = 1.82% in the parent level, 20% * 

27.3% = 5.46% in the child level, and 20% * 63.6% = 12.72% in the grandchild level 

or level 3. 
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Further investigations were conducted in order to determine if there is a 

constant relation between the class hierarchies when the error rate is 20%. A discrete 

distribution of the error over the hierarchy was determined. However, we want to find 

a continuous function of the distribution of the error over the hierarchy at any point 

where error rate start at maximum to minim. 

 

Figure 4.9: Error in class hierarchy in the Engineering domain. 

Figure 4.10, shows the distribution of the error rate over class hierarchy. The 

results show that, the parent classes most of the time has less error rate and the grand 

children class has more error rate. However, this is not true for all values as rarely the 

parent class has more errors.  
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Figure 4.10: Error distributions over hierarchy 

 

4.2. Existing algorithm (Method A: Naïve Bayes algorithm) 

4.2.1 Training stage  

The first task in the training stage is to separate 10% data for testing purposes 

from each class. 10% data is separated for each class out of total data for that class. 

For example, if 100 samples are available for class 1, 10 samples were taken out for 

testing. This 10% amount is standard in literature and in normal circumstances 10-

15% data is taken out for testing. If 50% of data is taken out, too less remains for the 

training stage and the classifier may not generalize well. After segregating, there were 

9012 items in training data and 969 items in testing data, including roughly 10% from 

each class.  
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On the second stage, the methodology of data cleaning presented in section 

3.1is applied, all the unnecessary words being removed from the titles of the books. 

These include articles such as, (a, and), prepositions (of, for etc.) and other common 

meaningless words like volume, edition, e-book etc. 

On the third stage, all the remaining words were extracted from the books’ 

titles and each word was assigned a unique number and another identifier to show 

which class it belongs to. Actually wordID is unnecessary and we may ignore it. For 

each word, we have a list of classes it can belong to, e.g. chemical may belong to 

class 1, 3 and 5 so its class ID will be (1,3,5). So the format was like: 

word  class ID  wordID 

For instance, the word Horticulture, the word ID may be 5 and if it belongs to 

class 10, its class ID is 10. Then all words are converted to uppercase so that while 

comparing the words later we do not have to deal with case-sensitivity issue. 

Finally, all the words are sorted alphabetically so that when comparing in the 

testing stage, we do not have to compare with all words. Thus, there is no need to 

compute distances with all the words but only with those which start with the 

specified letter. For instance, if the word is Horticulture, then we only need to 

compare it with the words starting with the letter H. 

      Once all is done, all the words, sorted alphabetically and in the format mentioned 

above, are stored in a data file. 

4.2.2 Testing stage 

In the testing stage, all the titles, along with the class to which it belongs to are 

passed through the testing function. For instance:  
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Class                                  title 

Agriculture   Horticultural Reviews, Volume 1 

In the testing stage, the book title goes through the same steps as the training 

data start the data cleaning process again. Useless words are removed and the useful 

words are extracted and separated, then converted into uppercase. 

After pre-processing, the final shape of the title will be: 

(HORTICULTURAL REVIEWS and VOLUME and 1) all of those words being 

removed as they are very generic words and cannot be associated with a particular 

class. The only word kept is HORTICULTURAL 

Next, the training data is loaded and as discussed before, only the words 

starting with the same letter as the testing word are selected for comparison. For 

instance, when we want to see which class the word FUNGI belong to, we will 

compare only with the words starting with the letter F. We do the same with the 

example above HORTICULTURAL which starts with H, we will compare it only 

with the words starting with the letter H. We call this a stemming process, where we 

associate each word with its own stem words only. 

The testing word is compared with the above selected words and its distance is 

computed from them. Two types of matching techniques are used; one is the 

Lavenstein Distance [77], the number of edits required to convert one string to 

another. For instance, if HORTICULTURE and HORTICULTURAL are compared, 

then Lavenstein Distance will be 2, since 2 edits are required to convert the first string 

into the second one. 
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The second one is the number of mismatched characters with respect to the 

shorter of the two strings e.g. if HORTICULTURE and HORTICULTURAL are 

compared, the shorter string is HORTICULTURE and with respect to its length, the 

number of mismatched characters are only 1 (A instead of E), so the distance between 

the two strings is 1. 

Even though both techniques use slightly different and give different results, 

when we take the minimum in the following stage, the final result is invariably the 

same.  

Once distances from all the words are computed, we select only those with the 

minimum distance. If multiple words give the same minimum distance (as they do 

because of repetition), then all of them are selected and the IDs of the classes they 

belong to, are stored in a cell array. For instance, if we give the label 'Horticultural 

Reviews, Volume 1' we know that after preprocessing, we are left with only 

HORTICULTURAL REVIEWS. 

Now, when classifier compares HORTICULTURAL with the training words 

and then computes the distance from them and chooses those words with minimum 

distances. Since in this case, HORTICULTURAL is present as it is in our data set, the 

minimum distance will be 0. Now HORTICULTURAL has 35 occurrences in class 1 

– (AGRICULTURE) and 1 in class 55 – (Plant Science), it would return an array of 

36 elements, with 35 elements as 1 and 1 element as 55 i.e. array = [1 1 1 .. 1 1 55] 

The process is repeated for all the words in the label and in the end resulting a 

cell array of class IDs to which these words may belong. So same process will be 
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repeated for reviews and the class IDs it returns will be appended in the previous 

array. 

In the final step, the most frequent class ID are picked as the class to which the 

label should belong. If multiple class IDs have the same frequency, then the one 

which comes first is picked. For instance, in the above case, decision is easy. Since 

there are 35 instances of class ID 1 and only 1 of class ID 55, mode function will 

return 1 and we classify the label to class 1 – AGRICULTURE. But suppose if there 

are 6 instances of class 1 and 15 instances of class 55 and 15 instances of class 20; 

now there are 2 class IDs with most frequent entries – 20 and 55, mode will return the 

class ID which is smaller so in that case class 20 will be the answer and label will be 

classified to class 20.   

4.2.3  Results 

4.2.3.1 Single label classification  

The testing is done for all the classes and the error rate for each class is 

compared. The error rate for most of the classes is quite high, the reason being that 

out of the 49000 total words in the 9012 training titles, only about 8500 are unique 

and the rest are just repetitions. This indicates a huge overlap of data among different 

classes and as a consequence, the classifier gets confused while testing and therefore 

misclassify the data. 

The last step, in which we pick the ID of the most frequent class, normally has 

number of IDs with the same frequency, and just picking the first one also introduces 

errors. The error rate for all the different classes is reported in Table 4.2. 
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Table 4.2: The error rate for all the different classes using single label classification 

Class name 

Total 

number of 

examples 

Correct Incorrect 
Error 

rate 

'Agriculture' 10 4 6 60 

'Allergy & Respiratory Medicine' 2 0 2 100 

'Analytical Chemistry' 25 6 19 76 

'Anatomy & Physiology' 1 0 1 100 

'Ancient  History & Classical Studies' 10 0 10 100 

'Anthropology & Archaeology' 10 1 9 90 

'Aquaculture & Fisheries' 10 4 6 60 

'Architecture & Planning' 3 1 2 66 

'Biochemistry' 12 1 11 91 

'Business, Economics, Finance, 

Accounting' 28 12 16 57 

'Cardiology & Cardiovascular Medicine' 14 6 8 57 

'Cell & Molecular Biology' 21 4 17 80 

'Chemical Engineering ' 24 10 14 58 

'Civil & Construction Engineering' 28 11 17 60 

'Clinical Microbiology' 1 0 1 100 

'Clinical Psychology' 20 7 13 65 

'Communication Technology & 

Networks' 25 8 17 68 
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'Computer Science & Information 

Technology' 27 4 23 85 

'Dentistry' 1 0 1 100 

'Dermatology' 2 0 2 100 

'Earth & Environmental Sciences' 17 2 15 88 

'Ecology' 10 3 7 70 

'Electrical & Electronics Engineering' 76 55 21 27 

'Endocrinology & Diabetes' 5 2 3 60 

'Energy' 13 1 12 92 

'Environmental Chemistry' 12 0 12 100 

'Food Science & Technology' 23 13 10 43 

'Gastroenterology & Hepatology' 6 1 5 83 

'General & Physical Chemistry' 20 0 20 100 

'Genetics &  Evolution' 6 0 6 100 

'Geography' 12 3 9 75 

'Hematology' 5 0 5 100 

'History' 12 2 10 83 

'Industrial Chemistry' 23 1 22 95 

'Industrial Engineering' 13 0 13 100 

'Inorganic Chemistry' 6 0 6 100 

'Language & Linguistics' 8 0 8 100 

'Literature' 21 15 6 28 
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'Materials Science' 39 24 15 38 

'Mathematics' 16 2 14 87 

'Mechanical Engineering' 22 2 20 90 

'Microbiology, Virology & Immunology' 7 0 7 100 

'Mobile & Wireless Communications' 29 18 11 37 

'Nanotechnology' 10 1 9 90 

'Neurology' 3 0 3 100 

'Neuroscience' 2 0 2 100 

'Nursing' 12 10 2 16 

'Obstetrics & Gynecology' 4 1 3 75 

'Oncology & Radiotherapy' 2 0 2 100 

'Organic Chemistry & Catalysis' 35 26 9 25 

'Pharmaceutical & Medicinal Chemistry' 20 6 14 70 

'Pharmacology' 4 0 4 100 

'Philosophy' 26 9 17 65 

'Physics' 32 10 22 68 

'Plant Science' 9 8 1 11 

'Polymer Science & Technology' 12 5 7 58 

'Psychiatry' 10 3 7 70 

'Psychology' 26 10 16 61 

'Public Administration &  Management' 18 4 14 77 
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'Public Health/General' 1 0 1 100 

'Religion & Theology' 11 2 9 81 

'Sociology, Media, Communications, & 

Cultural Studies' 19 2 17 89 

'Statistics' 26 17 9 34 

'Surgery' 1 0 1 100 

'Veterinary Medicine' 11 7 4 36 

 

The average error rate for all the classes can be computed by  

 Avg. Error Rate =   ∑ (Error Rate of class) x (No. Words in the class) 

      Total No. of Words 

where ∑ indicates the sum over all the classes. This is just the concept of weighted 

average. e.g. if we have 3 classes; class 1 has an error rate of 60%, class 2 has an error 

rate of 40% and class 3 has an error rate of 50%.  

Then using the simple average formula, the error rate obtained is 50%. 

((60+40+50)/3 = 50). But now suppose there are total of 10 words; 5 belong to class 

1, 3 to class 2 and 2 to class 3. Since more words belong to class, logically its error 

rate should have more contribution in the overall error rate. So we do weighted 

average, weight for class 1 is 5/10 = 0.5 (no. of words in the class / total words). 

Similarly weight for class 2 is 3/10 = 0.3 and weight for class 3 is 2/10 = 0.2. Now we 

multiply with respective error rates and sum them up; so the error rate becomes (0.5 x 

60) + (0.3 x 40) + (0.2 x 50) = 30 + 12 +10 = 52%. This error rate is more indicative 

of the overall behavior of all the classes as it gives more weight to the classes with 
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more amount of data. Using the above formula, the Avg. Error Rate for all classes 

comes out to be 64%. 

 As evident from Table 4.2, the error rate is low only for those classes which 

have a sufficient amount of data. Classes with high amount of data are more likely to 

be classified correctly just because the probability of occurrence is high. Probability 

statistics has low error rate because it contains more unique words and the 

overlapping of data with other classes is low. 

4.2.3.2 Multi-label classification 

The error rate can be reduced by number of different techniques. One simple 

way is to get all the different class IDs in the last step of testing stage, each of which 

have the same probability to be assigned to the given title – this is the Multi-Label 

Classification and in this case each title can belong to multiple classes. Given that the 

actual class is among the final set, this step can eliminate all the non-probable classes 

and another classifier can be used in the next step to choose the final class or a human 

can do that provided the number of such instances are small.  

Alternatively, unique words can be extracted and for each word, the class to 

which it belongs most frequently can be identified (the bag-of-words approach). Then, 

instead of assigning the class IDs of all the classes to which the word may belong, we 

assign only those class (or classes) IDs to which it belongs the most. But this 

technique is biased towards the class having more training samples, and the error rates 

for the classes which have the lesser data may increase more. The overall error rate 

will surely decrease as the classifier is now more biased towards the classes which are 
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more frequent and more likely to come. The results of this technique are slightly 

better (Table 4.3). 

Table 4.3: The error rate for all the different classes using multi-label classification  

Class name 

Total 

number of 

examples Correct Incorrect 

Error 

rate 

'Agriculture' 10 4 6 60 

'Allergy & Respiratory Medicine' 2 2 0 0 

'Analytical Chemistry' 25 14 11 44 

'Anatomy & Physiology' 1 0 1 100 

'Ancient  History & Classical Studies' 10 7 3 30 

'Anthropology & Archaeology' 10 5 5 50 

'Aquaculture & Fisheries' 10 7 3 30 

'Architecture & Planning' 3 1 2 66 

'Biochemistry' 12 1 11 91 

'Business, Economics, Finance, Accounting' 28 22 6 21 

'Cardiology & Cardiovascular Medicine' 14 11 3 21 

'Cell & Molecular Biology' 21 7 14 66 

'Chemical Engineering ' 24 12 12 50 

'Civil & Construction Engineering' 28 14 14 50 

'Clinical Microbiology' 1 0 1 100 

'Clinical Psychology' 20 14 6 30 
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'Communication Technology & Networks' 25 11 14 56 

'Computer Science & Information 

Technology' 27 10 17 62 

'Dentistry' 1 0 1 100 

'Dermatology' 2 0 2 100 

'Earth & Environmental Sciences' 17 4 13 76 

'Ecology' 10 5 5 50 

'Electrical & Electronics Engineering' 76 54 22 28 

'Endocrinology & Diabetes' 5 1 4 80 

'Energy' 13 1 12 92 

'Environmental Chemistry' 12 1 11 91 

'Food Science & Technology' 23 13 10 43 

'Gastroenterology & Hepatology' 6 2 4 66 

'General & Physical Chemistry' 20 2 18 90 

'Genetics &  Evolution' 6 0 6 100 

'Geography' 12 4 8 66 

'Hematology' 5 0 5 100 

'History' 12 5 7 58 

'Industrial Chemistry' 23 2 21 91 

'Industrial Engineering' 13 2 11 84 

'Inorganic Chemistry' 6 1 5 83 

'Language & Linguistics' 8 1 7 87 
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'Literature' 21 14 7 33 

'Materials Science' 39 25 14 35 

'Mathematics' 16 5 11 68 

'Mechanical Engineering' 22 4 18 81 

'Microbiology, Virology & Immunology' 7 0 7 100 

'Mobile & Wireless Communications' 29 17 12 41 

'Nanotechnology' 10 0 10 100 

'Neurology' 3 1 2 66 

'Neuroscience' 2 0 2 100 

'Nursing' 12 5 7 58 

'Obstetrics & Gynecology' 4 0 4 100 

'Oncology & Radiotherapy' 2 0 2 100 

'Organic Chemistry & Catalysis' 35 23 12 34 

'Pharmaceutical & Medicinal Chemistry' 20 8 12 60 

'Pharmacology' 4 1 3 75 

'Philosophy' 26 9 17 65 

'Physics' 32 8 24 75 

'Plant Science' 9 5 4 44 

'Polymer Science & Technology' 12 2 10 83 

'Psychiatry' 10 2 8 80 

'Psychology' 26 8 18 69 
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'Public Administration &  Management' 18 8 10 55 

'Public Health/General' 1 0 1 100 

'Religion & Theology' 11 5 6 54 

'Sociology, Media, Communications, & 

Cultural Studies' 19 2 17 89 

'Statistics' 26 14 12 46 

'Surgery' 1 0 1 100 

'Veterinary Medicine' 11 8 3 27 

 

The Avg. Error Rate for this technique comes out to be 57% which is an 

improvement over the previous technique. 

4.3 Existing algorithm (Method B: KNN algorithm) 

Suppose the classifier was asked to classify some sample X, and after 

computation classifier finds that it can belong to any one of the class 1, class 2 and 

class 3. In this case, we need a rule to break a tie and the one we used in previous 

section was to pick the lowest class ID. Therefore, the sample will be classified to 

class 1 even though it may belong to class 2 or class 3. Suppose that sample originally 

belonged to class 2; then the classification will be wrong and will account as an error. 

But if we don’t use any tie-breaker and outputs all the equally probable classes, i.e. 

class 1, class 2 and class 3, then there will be no error as sample does belong to one of 

these classes. This is the whole idea of multi-label classification or multi-output 

classification, in which input X is not mapped to a single scalar class y, but rather a 

vector of classes Y  
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 The algorithm was modified to accommodate the multi-label classification and 

an error occurs only if the actual class y was not among the vector of classes Y given 

by the classifier. The error rate is reduced in this case compared to the case of single-

output classification. The results are shown in Table 4.4. 

Table 4.4: Results obtained with KNN algorithm 

Class name 

Total 

number of 

examples 

Correct Incorrect 
Error 

rate 

'Agriculture' 10 4 6 60 

'Allergy & Respiratory Medicine' 2 2 0 0 

'Analytical Chemistry' 25 14 11 44 

'Anatomy & Physiology' 1 0 1 100 

'Ancient  History & Classical Studies' 10 7 3 30 

'Anthropology & Archaeology' 10 5 5 50 

'Aquaculture & Fisheries' 10 7 3 30 

'Architecture & Planning' 3 1 2 66 

'Biochemistry' 12 2 10 83 

'Business, Economics, Finance, Accounting' 28 22 6 21 

'Cardiology & Cardiovascular Medicine' 14 11 3 21 

'Cell & Molecular Biology' 21 8 13 61 

'Chemical Engineering ' 24 14 10 41 

'Civil & Construction Engineering' 28 20 8 28 
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'Clinical Microbiology' 1 0 1 100 

'Clinical Psychology' 20 14 6 30 

'Communication Technology & Networks' 25 13 12 48 

'Computer Science & Information 

Technology' 
27 12 15 55 

'Dentistry' 1 0 1 100 

'Dermatology' 2 1 1 50 

'Earth & Environmental Sciences' 17 6 11 64 

'Ecology' 10 6 4 40 

'Electrical & Electronics Engineering' 76 61 15 19 

'Endocrinology & Diabetes' 5 3 2 40 

'Energy' 13 7 6 46 

'Environmental Chemistry' 12 2 10 83 

'Food Science & Technology' 23 15 8 34 

'Gastroenterology & Hepatology' 6 4 2 33 

'General & Physical Chemistry' 20 8 12 60 

'Genetics &  Evolution' 6 2 4 66 

'Geography' 12 9 3 25 

'Hematology' 5 3 2 40 

'History' 12 6 6 50 

'Industrial Chemistry' 23 4 19 82 
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'Industrial Engineering' 13 4 9 69 

'Inorganic Chemistry' 6 2 4 66 

'Language & Linguistics' 8 4 4 50 

'Literature' 21 16 5 23 

'Materials Science' 39 28 11 28 

'Mathematics' 16 8 8 50 

'Mechanical Engineering' 22 8 14 63 

'Microbiology, Virology & Immunology' 7 2 5 71 

'Mobile & Wireless Communications' 29 19 10 34 

'Nanotechnology' 10 2 8 80 

'Neurology' 3 2 1 33 

'Neuroscience' 2 0 2 100 

'Nursing' 12 11 1 8 

'Obstetrics & Gynecology' 4 1 3 75 

'Oncology & Radiotherapy' 2 1 1 50 

'Organic Chemistry & Catalysis' 35 29 6 17 

'Pharmaceutical & Medicinal Chemistry' 20 11 9 45 

'Pharmacology' 4 2 2 50 

'Philosophy' 26 20 6 23 

'Physics' 32 15 17 53 

'Plant Science' 9 8 1 11 
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'Polymer Science & Technology' 12 8 4 33 

'Psychiatry' 10 5 5 50 

'Psychology' 26 17 9 34 

'Public Administration &  Management' 18 10 8 44 

'Public Health/General' 1 0 1 100 

'Religion & Theology' 11 7 4 36 

'Sociology, Media, Communications, & 

Cultural Studies' 
19 7 12 63 

'Statistics' 26 20 6 23 

'Surgery' 1 0 1 100 

'Veterinary Medicine' 11 11 0 0 

 

Green blocks indicate the classes with error rate of less than 50% and it is 

visible that now such instances are lot more than in previous tables. The overall Avg. 

Error Rate is 41% which is an improvement of nearly 16% from the previous method. 

4.4 Classification of parent class 

The classification of Parent Classes is much less error prone as there are few 

parent classes and the margin for error is smaller. In this case, there are 6 Parent 

classes corresponding to 65 Child classes. The original classifier (in multi-label case) 

returns a set of child classes, which may or may not belong to the same parent class. 

So we get the parent class for each of these child classes and then compare them one 

by one to the original parent class. An error occurs only if none of the parent classes 
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match the original parent class. The error rates for all 6 parent classes are shown in 

Table 4.5. 

Table 4.5: Errors obtained in case of parent classification 

Class name 

Total 

number of 

examples 

Correct Incorrect Error rate 

'Chemistry' 153 94 59 38 

'Engineering' 244 212 32 13 

'Health Sciences' 132 114 18 13 

'Life, Earth & Environmental Sciences ' 103 65 38 36 

'Physical Sciences' 171 125 46 26 

'Social Sciences & Humanities' 166 147 19 11 

 

The highlighted entries indicate the classes with error rate of less than 30%. 

The overall weighted Average Error Rate is 21%. 



	
  

94 	
  

	
  

  

Discussion 

 

Large collections of a library of documents may include hundreds of 

thousands of documents and more are added every week. In this case, there is a need 

for finding out if a machine learning algorithms might be helpful. So, we can answer 

this question by the following this simple idea: a small percentage of all examples are 

enough for the induction of a high performance classifier. If this is the case, the use of 

machine learning is helpful. However, if 50% of the collection is not enough, machine 

learning is not an adequate approach as the resource consumed (human and 

computational time) are two high and the advantages it brings are insignificant 

compared with the drawbacks. 

In order to test this idea, a new algorithm is developed and implemented. 

When applying the proposed algorithm for the case study one, if a perfect training is 

performed, then the error rate is very small. Also, the relation between the number of 

iteration and the error rate was shown, if more samples are added, then error is 

decreasing.  

In the case study two, where a collection of about 9000 book titles is available, 

when using 100% of the collection, an error rate of 40% ± 5% is obtained. The result 

of the experiment is very pessimistic. However, if a closer look and careful attention 

is paid to Figure 4.2, it can be observed that the curve trend is going slowly toward a  

lower error rate. It can be assumed, that a collection of 50,000 book titles is available, 
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then the error rate will be 10% ± 2% from the number of training example (close to 

20,000 book titles).  

  This problem is due to: i) the large number of features and low number of 

examples; and ii) the high frequency of each feature in relation to documents, which 

makes the classifier confused about the examples. For example, for the case study 

three, when analyzing the results from Figure 4.3, it can be observed that error rate 

drops to less than 10% with number of examples less than 1000. This is due to the 

small number of features, as all the examples belong to the engineering domain and 

thus; the features are very limited and related only to this domain.  

  Figure 4.6 shows the social sciences and humanities domain (case study four). 

This experiment gives a result very similar to the result found in the engineering 

domain (experiment three). Therefore, it can be concluded that if each domain is 

classified separately, a lesser number of examples can be obtained than in the case of 

classifying the entire collection. So, according to experiment 2, 3, and 4, we can see 

that, if the domain is small enough such as the engineering domain or the social 

sciences and humanities domain, then the error rate drops to 10% at much faster rate. 

Figure 5.1 summarizes the finding for these case studies.  

Figure 5.1 shows a disparity in the error rate between different domains in the 

number of examples needed to take the error rate down to 10%. So, in case of the 

whole domain 4000 examples are required, while the engineering or social sciences 

and humanities domain require 550 examples and 650 examples respectively.  
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 Figure 5.1: Findings of experiments 2, 3, and 4. 

The second research question presented in chapter 1 is, if a classifier was 

induced at higher level, does this implies to a lower class classifier? Which means, if 

an example was classified at higher level class, would this example be a parent and 

grandparent to all its documents? In order to test this hypothesis different case studies 

were tested. 

For example, in the case study three, Figure 4.4 shows that when we 

investigated the error at 20% we found that 9.1% of the error is in the parent level, 

which means the error at parent level is 9.1 * 20% = 1.82%, then it is 5.46% at the 

children level and 12.72% at the grand children level. This experiment shows that 

there are more errors in the lower level than in the higher level of the class hierarchy.  

Figure 4.5 shows that if the examples are correctly classified at the parent 

level and it has x% error in the lower level, this means that there are x % misclassified 

examples in the lower level. However, the error of the examples that where classified 

in the upper level to the classes that are correctly classified in the lower level is very 
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low and it is found to be << x%. This concludes that, if we have 100 examples 

correctly classified in the upper level, those examples will have x% misclassified 

examples in the lower level. And if we have 100 examples, correctly classified in the 

lower level they will have << x% misclassified examples in the upper level. Also, it 

was shown that parents and grandparents classes might have miss-classified children 

in the lower level more than misclassified grandparent.  

Another data set used is Routers data set (case study eight.) This document 

classification was done using Naïve Bayes technique and the error rate drops to less 

than 1 % at a very early stage and with a number of examples = 100 documents the 

error rate drops to a number close to 200 at 8000 examples. This behavior is due to 

large size of information as we used to full text in this case, and we use the 

documents’ contents and not only the documents’ titles. This concludes that if more 

information is used in the document, the error rate will drop dramatically. This result 

may address the first research question as follow: If we can use more information 

about the document, will it give a much better result? In order to answer this question 

a set of 3 more case studies (five, six and seven) were used for simulations. 

The results of those experiments showed that when the training is started, the 

number of features is high and the relation of number of examples to the number of 

features is almost 1:1.5. However, more examples are added, the number of new 

features drops to point where it gets to 1 to 0.5. This means we can have a much 

better error rate if we add more examples. The number of new features is decreasing 

in all levels, parent, grandparents and children at almost the same rate as presented in 

Figures 4.7, 4.8, and 4.9. This means if we add more example we will have a great 

improvement in the error rate at all levels.    
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In summary, a new algorithm using machine learning was proposed and 

compared to two of the very popular methods Naïve Bayes and KNN methods. As 

shown in Chapter 3, in order to perform the comparisons between algorithms, two 

well-known and highly recognized evaluation metrics (macro-micro averaging and 

hamming loss) were used. 

Simulations showed that using only book titles to classify a large collection of 

library contents is very time consuming and costly too. Alternatively, it was suggested 

that either use the sub domain approach and classify each sub domain separately or 

include as much information as possible such as; abstract of documents, an 

introduction, or the whole document. 

Another major finding is that a parent node can be a parent of all documents 

with a small and acceptable error rate 𝑒!. However, a child node is a child if all 

ancestors with a very small error rate 𝑒! where 𝑒! ≫ 𝑒!. 

 The problems encountered when conducted the research presented in this 

work is that more data sets must be used to verify the findings. Although, five 

different data sets from different domains were used, the author still feels that more 

experiments on different domains may be required, this aspect being a possible 

weakness of the research. Another weakness is related to the fact that only one 

machine learning method for each data set was used and the proposed algorithm was 

compared only with KNN and Naïve Bayes.  

Different results could have been obtained if different methods were used, but 

the limited time allocated for this research made it impossible, as a big percent of it 

was spent on formulating the problem and finding the suitable data set. Selecting 
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totally different data sets and approaching the problem from different perspective 

gives novelty to this research. A set of aspects were difficult to handle as many 

problems were encountered (such as having a data set that may need a huge memory 

to solve which is turn ends up in to “out of memory” error).  

The significance of this research is very clear as it addresses the first research 

question clearly and informs that a library collection or a similar collection can be 

classified automatically using machine learning algorithms.           
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Conclusion 

 

This study is focused on the HMC with emphasis on several case studies to 

draw the research observations. This is done by conducting various experiments using 

a few popular machine learning algorithms: KNN and Naïve Bayes algorithms, along 

with the proposed algorithm based on SVM. The research also aimed to identify the 

child-parent relation, and parent-child relation. To this goal, a proprietary software 

was built to test whether an example is classified into its corresponding child and 

grandchild as well as if the grandchild belonged to its accurate parent and 

grandparent. The significance of the research is the motivation for the use of machine 

learning in digital libraries which were the primary resource that were used in the 

study. We have also used 20 newsgroup and Routers data set to compare the 

performance.   

The performance analysis was done using Macro and Micro averaging and 

hamming loss metrics. Based on the results, it was found that, it is very time 

consuming and costly to use only book titles to classify a large collection of library 

contents. Thus, it was suggest that either use the sub domain approach or classify each 

sub domain separately, or include more information such as abstract of documents, an 

introduction of the document. Another major finding is that a parent node can be a 

parent of all documents with a small and acceptable error rate. In general, these 

findings are very similar to the many recent published studies. 

In future, we plan to generalize the proposed algorithm for the hierarchical 
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case where the interrelation of the class labels can be specified by a generalization 

tree of a directed acyclic graph (DAG) as in Vateekul et al. [2] study. 
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 االتأثر من االأمثلة االمتعدددةة االتصنیيف

 ھھھهند ھھھهزااعع ططلالل االشریيف

 

 االمستخلص

 

اانن عملیية تصنیيف االنصوصص االكتابیية ھھھهي باختصارر ووضع كل مثالل (كتابب ااوو ووثیيقة نصیية) في صنف ووااحد ااوو 

ااكثر. وواابسط عملیية یيتم فیيھها ااستخداامم االكمبیيوتر للتصنیيف تحت مجالل تعلیيم االالة (ااوو اانن االكمبیيوتر یيتعلم من 

جزئیين فقط ثم نصنع من ھھھهذاا االامثلة وویيصبح ااكثر فعالیية مع االزمن) ھھھهي اانن ننشي مصنف ووااحد یيصنف االى 

ووااحد للعمل  تثم یيتم تشغیيل ھھھهذهه االمصنفاتت في ووقاالمصنف عدةة صورر بحیيث تلائم كل منھها مجالل محددد٬، 

بالتوااززيي.  	
  

ووقد نجد اانن تصنیيف مكتبة ررقمیية بمافیيھها من كمیياتت كبیيرةة من االكتب وواالوثائق ھھھهو مثالل جیيد یيعطي دداافع قويي 

بحیيث یيتنج في االنھهایية لى ااصنافف متعدددةة ثم ااصنافف فرعیية ووھھھهكذاا. لمجالل االبحث. بحیيث یيتم تصنیيف االكتب اا

تصنیيف شجريي ھھھهیيكلي –- - 	
  

ھھھهل یيمكن اانن یيتم تصنیيف ووثیيقة ووااحدةة االى  –في مجالل ھھھهذاا االبحث نجد اانن ھھھهناكك نقظة ااخرىى قیيمة للبحث ووھھھهي 

متعددد  یيسمى تصنیيفل في بحثنا في مجالل ما اا كانت االاجابة بنعم٬، فاننا في ھھھهذهه االحالة سنعمااذذااكثر من صنف٬، 

االاصنافف للوثیيقة االوااحدةة. 	
  

ر في االتصنیيف تواانن االدررااسة االتي نقومم بھها ھھھهنا ھھھهي تبحث في ااظظھهارر مدىى االفائدةة االعائدةة من ااستخداامم االكمبیي

م االالةتعلیي –االالي بطریيقة  % من ٬50، ووھھھهل ھھھهي مفیيدةة اامم لا. فمثلا اانن كنا بحاجة االى ااستخداامم ااكثر من -

% 10دةة عائدةة االیينا. وواانن كنا بحاجة االى ائوتر٬، فانن ذذلك قد یيكونن مجھهودد كبیير وولا توجد فاالمحتوىى لتعلیيم االكمبیي

فقط من االمحتوىى٬، فانن ھھھهناكك فائدةة كبیيرةة لنا من ااستخداامم االكمبیيوتر.  



	
  

	
  

ااخیيراا٬، نریيد اانن نبحث اانن كانن ھھھهناكك علاقة بیين االمصنفاتت٬، بحث ھھھهل نجد اانن االوثیيقة االتابعة لصنف معیين٬، ھھھهي 

افف االعلیيا لھه في االشجرةة٬، اانن كانت مصنفة ھھھهل ھھھهیيا تعتبر مرجع لمجیيع االاصنافف االتي تاتي تتبع جمیيع االاصن

تحتھها في االشجرةة.  	
  

هه وومقاررنتھه مع االانظمة االاخرىى االموجوددةة.ررسنقومم بتصمیيم نموذذجج لتصنیيف االوثائق تلقائیيا ووااختبا 	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
  

 

 

 

 

 

االتأثرر منن االأمثلة االمتعددددةة االتصنیيفف  
 

 

 

 

ططلالل االشرریيففھھھهندد ھھھهززااعع   
 

 

بحثث مقددمم لنیيلل ددررجة االماجستیيرر في االعلوومم (علوومم االحاسباتت)  

 

ااشرراافف  

دد.ووددیيع صالح االحلبي   
 

كلیية االحاسباتت وونظظمم االمعلووماتت  

جامعة االملكك عبدداالعززیيزز  

جددةة ـ االمملكة االعرربیية االسعووددیية  

)٢۲٧۷/٨۸/١۱٤٣۳٥مم ( ٢۲٠۰١۱٤ھھھهـ ـ یيوونیيوو ١۱٤٣۳٥ شعبانن  



	
  

	
  

 

 

 

 

 

 

 

 

بسم الله االرحمن االرحیيم  

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
  

 

 

 

 

 

االتأثرر منن االأمثلة االمتعددددةة االتصنیيفف  
 

 

 

 

ھھھهندد ھھھهززااعع ططلالل االشرریيفف  
 

 

 

بحثث مقددمم لنیيلل ددررجة االماجستیيرر في االعلوومم (علوومم االحاسباتت)  

 
 

كلیية االحاسباتت وونظظمم االمعلووماتت  

جامعة االملكك عبدداالعززیيزز  

جددةة ـ االمملكة االعرربیية االسعووددیية  

)٢۲٧۷/٨۸/١۱٤٣۳٥مم ( ٢۲٠۰١۱٤ھھھهـ ـ یيوونیيوو ١۱٤٣۳٥ شعبانن  

 


